Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Pair Experiments with Computer Models to Peer into Cells

Published: Wednesday, March 20, 2013
Last Updated: Wednesday, March 20, 2013
Bookmark and Share
BBSRC-funded researchers have developed a new strategy that can give scientists a better insight into how complex molecular machineries function in living cells.

In research published in the journal Molecular Systems Biology, the team from the University of Warwick, Manchester Interdisciplinary Biocentre and Liverpool University showed how to extract in vivo information about how complex molecular systems in yeast cells are controlled.

By making small changes in a process called mRNA translation, a crucial step in the manufacture of proteins within a cell, the team was able to obtain important information without disrupting the system.

These data were used to set parameters for a detailed computational model of protein synthesis in cells, revealing a number of insights about the process which were previously unknown.

For example, the research showed how individual components in the mRNA translation process had co-evolved to share responsibility for controlling how fast proteins are made.

Professor John McCarthy, professor of molecular systems biology at Warwick University, said: "A major objective of systems biology is to move forward from analysis of individual cellular components to create accurate digital models that provide insight into how these components work together within living cells.

"Through this approach, we ultimately hope to understand the 'emergent properties' of molecular systems in cells that, for decades, have fascinated biologists but evaded proper explanation.

"Up to now, it has proved very difficult to obtain an accurate picture of how cells control the various processes that go on inside them, leaving us largely guessing how the properties of individual components relate to the behaviour of systems that are assembled from them within living cells.

"Using minimal perturbations of precisely targeted steps of specific cellular processes together with a large number of quantitative analytical measurements, we have now made a major first step towards obtaining detailed insight into how the living cell's protein synthesis machinery is managed at the system level."

The approach has potential as a platform for a wide range of future studies into the molecular systems biology of gene expression.

The researchers also believe the combined experimental and computational approach taken should be applicable to multiple processes in a range of organisms.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Chromosome Map Points the Way Through Campylobacter’s Genetic Controls
The Institute of Food Research has produced a new map of the Campylobacter genome, showing the points where all of this pathogenic bacteria's genes are turned on.
Wednesday, November 13, 2013
Moving Genes have Scientists Seeing Spots
An international team of scientists has perfected a way of watching genes move within a living plant cell.
Wednesday, September 11, 2013
Breaking up the Superbugs’ Party
The fight against antibiotic-resistant superbugs has taken a step forward thanks to a new discovery by scientists.
Friday, August 16, 2013
Lack of Sleep Alters Human Gene Activity
New research from the University of Surrey has found that as little as one week of inadequate sleep is enough to alter the activity of hundreds of human genes.
Thursday, February 28, 2013
Collisions of Protein Machines Cause DNA Replication Derailment
Scientists have published results that will forever change the way researchers view the interplay between gene expression, DNA replication and the prevention of DNA damage.
Monday, February 28, 2011
Scientific News
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Making Precision Medicine a Reality
Researchers are one step closer to understanding the genetic and biological basis of diseases like cancer, diabetes, Alzheimer’s and rheumatoid arthritis – and identifying new drug targets and therapies.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Genetic Approach May Lead to New Treatments for Digestive Diseases
Researchers at UMass Medical School have identified a new molecular pathway critical for maintaining the smooth muscle tone that allows the passage of materials through the digestive system.
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!