Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Pair Experiments with Computer Models to Peer into Cells

Published: Wednesday, March 20, 2013
Last Updated: Wednesday, March 20, 2013
Bookmark and Share
BBSRC-funded researchers have developed a new strategy that can give scientists a better insight into how complex molecular machineries function in living cells.

In research published in the journal Molecular Systems Biology, the team from the University of Warwick, Manchester Interdisciplinary Biocentre and Liverpool University showed how to extract in vivo information about how complex molecular systems in yeast cells are controlled.

By making small changes in a process called mRNA translation, a crucial step in the manufacture of proteins within a cell, the team was able to obtain important information without disrupting the system.

These data were used to set parameters for a detailed computational model of protein synthesis in cells, revealing a number of insights about the process which were previously unknown.

For example, the research showed how individual components in the mRNA translation process had co-evolved to share responsibility for controlling how fast proteins are made.

Professor John McCarthy, professor of molecular systems biology at Warwick University, said: "A major objective of systems biology is to move forward from analysis of individual cellular components to create accurate digital models that provide insight into how these components work together within living cells.

"Through this approach, we ultimately hope to understand the 'emergent properties' of molecular systems in cells that, for decades, have fascinated biologists but evaded proper explanation.

"Up to now, it has proved very difficult to obtain an accurate picture of how cells control the various processes that go on inside them, leaving us largely guessing how the properties of individual components relate to the behaviour of systems that are assembled from them within living cells.

"Using minimal perturbations of precisely targeted steps of specific cellular processes together with a large number of quantitative analytical measurements, we have now made a major first step towards obtaining detailed insight into how the living cell's protein synthesis machinery is managed at the system level."

The approach has potential as a platform for a wide range of future studies into the molecular systems biology of gene expression.

The researchers also believe the combined experimental and computational approach taken should be applicable to multiple processes in a range of organisms.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Chromosome Map Points the Way Through Campylobacter’s Genetic Controls
The Institute of Food Research has produced a new map of the Campylobacter genome, showing the points where all of this pathogenic bacteria's genes are turned on.
Wednesday, November 13, 2013
Moving Genes have Scientists Seeing Spots
An international team of scientists has perfected a way of watching genes move within a living plant cell.
Wednesday, September 11, 2013
Breaking up the Superbugs’ Party
The fight against antibiotic-resistant superbugs has taken a step forward thanks to a new discovery by scientists.
Friday, August 16, 2013
Lack of Sleep Alters Human Gene Activity
New research from the University of Surrey has found that as little as one week of inadequate sleep is enough to alter the activity of hundreds of human genes.
Thursday, February 28, 2013
Collisions of Protein Machines Cause DNA Replication Derailment
Scientists have published results that will forever change the way researchers view the interplay between gene expression, DNA replication and the prevention of DNA damage.
Monday, February 28, 2011
Scientific News
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos