Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Merck Millipore Launches MILLIPLEX® MAP Kits

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
Enables detection of multiple pluripotency markers in a single measurement.

Merck Millipore has announced availability of the MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kits, which enable the analysis of many different pluripotency biomarkers in a single measurement.

These kits are the first commercially available multiplexed protein biomarker assays based on the Luminex® xMAP® platform for this important research area.

This new application of trusted bead-based multiplex technology gives researchers rapid feedback on the potency status of stem cell cultures and offers a significant advantage over existing techniques, which detect a limited number of proteins with a semi-quantitative output for a single sample.

Merck Millipore's new MILLIPLEX® MAP kits examine protein biomarkers that indicate the potency of stem cells, enabling pluripotent stem cells to be distinguished from multipotent or differentiating cells.

These new kits save time and resources by accurately detecting large numbers of pluripotency markers in one measurement. Kits can be used on cultures of induced pluripotent stem cells, human embryonic stem cells, cancer stem cells or cancer cell lines.

Two kits are available for assessing stem cell pluripotency. The MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kit 1 monitors the expression of the transcription factors Oct 3/4, Sox2, Nanog and c-Myc, which play critical roles in the maintenance of pluripotency and self-renewal in stem cells.

The MILLIPLEX® MAP Human Stem Cell Pluripotency Magnetic Bead Kit 2 contains seven additional pluripotency-related markers, including a transcription factor, a translational regulator, transmembrane proteins and cell surface glycostructures.

These assays are essential for assessing the potency of stem cell cultures in studies ranging from cancer and developmental biology research to bioprocess monitoring. MILLIPLEX® MAP assays make it easy to analyze both cell surface and intracellular proteins.

"The MILLIPLEX® MAP Stem Cell Pluripotency Kit 1 is a valuable tool for stem cell research. We obtained very interesting and promising results," said Frank Edenhofer, Ph.D., Head of the Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn, LIFE & BRAIN Center. "It is noteworthy that this assay enabled us to observe even early onset of differentiation in iPS cell cultures."

"Stem cells are of great interest for regenerative medicine and drug discovery efforts, and researchers must be able to effectively characterize the potency status of pluripotent stem cells to advance their progress toward clinical use," said Linda Meeh, Ph.D., Director of Marketing for Immunoassays and Multiplexing.

Meeh continued, "MILLIPLEX® MAP kits offer a quick and simple way to achieve this characterization, generating a comprehensive assessment of the overall quality of cell cultures."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Princeton’s Dr Bonnie Bassler Receives 2014 Alice C. Evans Award
Merck Millipore congratulates winner of the Alice C. Evans award for leadership in clinical microbiology.
Thursday, May 22, 2014
Merck Millipore Announces Incoming CEO and President
Udit Batra, Ph.D. will be responsible for the organization’s strategic direction to drive growth and product innovation as well as oversight of the worldwide operations.
Tuesday, April 15, 2014
Merck Millipore Announces New Genomic Biomarker Services
Genetic and epigenetic technologies added to established CRO services for biomarker development, validation and testing.
Wednesday, December 05, 2012
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
New Hope for Personalized Treatment of Eczema
Pharmaceutical researchers at Oregon State University have developed a new approach to treat eczema and other inflammatory skin disorders that would use individual tests and advanced science to create personalized treatments based on each person's lipid deficiencies.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos