Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Your Immune System: On Surveillance in the War Against Cancer

Published: Monday, May 13, 2013
Last Updated: Monday, May 13, 2013
Bookmark and Share
Wake Forest Baptist Research looks at gene expression profiling in breast cancer.

Predicting outcomes for cancer patients based on tumor-immune system interactions is an emerging clinical approach, and new research from Wake Forest Baptist Medical Center is advancing the field when it comes to the most deadly types of breast cancer.

"We know that one function of our immune system is to detect and destroy pre-malignant cells before they can become cancer," said lead author Lance D. Miller, Ph.D., associate professor of cancer biology at Wake Forest Baptist. "However, sometimes the immune system becomes unresponsive to the presence of these cells and a tumor develops."

This unresponsiveness can be temporary, and the immune system can remain alerted to the fact that there's a problem. Immune cells can stand post along the borders of the tumor and even infiltrate the tumor core, where they may gain a better position for eventual attack. "We now have technologies that allow us to quantify aspects of this interaction and from that information we can make predictions about cancer outcomes, Miller said."

The study published online ahead of print last month in the journal Genome Biology.

This approach is known as gene expression profiling, and by studying the expression profiles of 2,000 human breast tumors, Miller and his team identified several immune gene signatures that reflect the abundance and anti-tumor properties of different types of tumor-infiltrating immune cells. They found that in certain aggressive types of breast cancer, such as basal-like or triple negative disease, these immune signatures were highly predictive of cancer recurrence years after initial treatment.

"Strikingly, the patients who seemed to benefit the most were those with highly proliferative and clinically aggressive disease," Miller said. "In these cases, high expression levels of the immune genes predicted for recurrence-free survival, while low immune gene expression predicted for a high likelihood of cancer recurrence."

An important next step, Miller said, will be translating this into a diagnostic test that may help doctors make more informed treatment decisions.

"Knowing a tumor's immunogenic disposition could help oncologists know whether to prescribe more or less aggressive treatment regimens, or perhaps, to know which drugs, specifically, will be most effective," he said.

For doctors like Bayard Powell, M.D., chief of hematology and oncology at Wake Forest Baptist's Comprehensive Cancer Center, new drugs designed to enhance anti-tumor immune responses are beginning to play a major role in the treatment of certain forms of cancer.

"At Wake Forest Baptist we are now fighting cancer with state-of-the-art therapies including immunotherapeutics," Powell said. "How a tumor's immunogenic disposition influences the effectiveness of immunotherapeutic drugs is an important question that could lead to valuable new strategies in personalized medicine."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
CES Score May Predict Response to Cancer Treatment
Researchers identify new type of biomarker that helps predict prognosis and response to several types of cancer treatment.
New Therapeutic Target for Crohn’s Disease
A promising new target for drugs that treat IBD has been identified along with a possible biomarker for IBD severity.
Uncovering Water Bear Resilience
A protein identified in water bears can protect DNA of human cells from lethal doses of radiation damage.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Stem Cells Growing 3D Lung-in-a-Dish
Researchers have created 3D lung-like tissue from lung-derived stem cells. The tissue can be used to study lung diseases.
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!