Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Bringing Out the Usual – and Unusual – Cancer Genomics Suspects

Published: Tuesday, June 18, 2013
Last Updated: Tuesday, June 18, 2013
Bookmark and Share
Several years ago, researchers sequencing lung cancer genomes encountered a number of red herrings.

After combing through thousands of genes in a large number of patients, they had come up with a list of likely genetic suspects tied to the disease. Most of these genes made sense – some had previously been implicated in cancer, others clearly played an important biological role. But the data also pointed to a group of genes encoding olfactory receptors – the proteins that allow us to smell. Why were so many of these genes cropping up? Could these possibly be culprit genes? In the end, researchers found that they were simply red herrings – distractions along the way to pinpointing the mutations driving cancer.

As cancer genomics scales up, more and more mutations can be detected. But in order for critical patterns and potential drug targets to emerge, researchers need to be able to eliminate the red herrings from their results and identify the genetic changes driving different cancer types. To do so, Broad researchers have surveyed the genetic landscape of cancer to better understand the spectrum of mutations within and across cancer types, and have used this information to develop a more sophisticated analytical methodology to detect key mutations. Known as MutSigCV, the new methodology is featured prominently in a paper appearing in Nature this week.

“Back in the days when there was very little data, researchers would get excited about seeing one mutation in a gene,” said co-first author Michael Lawrence, a Broad computational biologist. “But in this era of big data, thousands of samples are being sequenced and every gene has many mutations. We have to be able to support the idea that the mutation rate of a particular gene is above what we’d expect to see.”

Lawrence and his colleagues wanted to understand the source of the red herring problem. Most analytical approaches used for finding cancer genes take into account the overall genome-wide mutation frequency in a given type of cancer as well as a handful of other parameters. But these measures are often not enough to weed out unhelpful results. Mutations are not uniform across the genome, and some genes are ‘highly mutable,’ meaning that for a variety of reasons, they are more prone to accumulating mutations.

“Not taking these highly mutable genetic regions into account leads to declaring that genes in these regions have more mutations than expected and therefore likely were positively selected for during the cancer’s evolution,” said senior author Gad Getz, director of Cancer Genome Computational Analysis at the Broad. “Now we know that this could have been just by chance so there is really no evidence that these genes are actually involved in cancer.”

In order to factor in these highly mutable genes and other sources of problematic data, Getz’s team developed an algorithm that takes context into account. Any given nucleotide in the genome is influenced by three major kinds of context: its immediate, DNA neighbors (having an A, C, T, or G on either side); its location on a chromosome; and the type of cell it is in.

In the case of the olfactory receptor genes that kept turning up unexpectedly in the lung cancer data, a key clue would emerge when a visiting scientist named Paz Polak gave a talk to Getz’s lab. His talk had to do with the phenomenon of DNA replication timing. In order for a cell to divide and each daughter cell to receive a complete copy of the genome, all of the DNA must be duplicated. But this copying process does not happen all at once – some genes get copied early, and others are copied later (this animation shows the process over time). Genes that get copied later tend to be more prone to mutation. And olfactory receptor genes tend to get copied quite late.

“That was the real key to solving this mystery,” said Lawrence. “We went back to our data and looked at the olfactory receptors, and sure enough, they are uniformly late replicating.”

Using this criterion and many others, the researchers developed MutSigCV to account for context when ranking the most promising genetic findings. By looking at data from over 3,000 tumor samples representing 27 cancer types, the team was able to see the extraordinary range of mutation frequency and spectrum for tumors.

These maps show patterns that are unique to certain cancer types. For instance, skin cancer has a specific pattern or “signature” that reflects mutations induced by ultraviolet light; lung cancer’s signature is influenced by tobacco smoke; and other cancers – head and neck cancer, cervical cancer, and bladder cancer – all share a common signature likely tied to a response to infection.

Overall, the frequency of mutations varied by more than 1,000 fold between cancers with the lowest (pediatric cancers and leukemias) and the highest (melanoma and lung cancer) mutation rates.

With the ability to eliminate many suspicious genes, the researchers say it is now possible to start analyzing large cancer collections, including combined datasets from many cancer types. “We believe that this tool should be used in all studies — small or large — since the resulting gene list more accurately represents genes that have undergone positive selection in cancer,” said Getz. “Our goal is to use MutSigCV across cancer datasets to get the most comprehensive list of cancer genes.”

By combining MutSigCV with other MutSig tools, Getz’s team has already begun undertaking this challenge, looking across cancer types in what his group refers to as “pan-cancer” studies. Through this work, they hope to pinpoint genes that transcend cancer type and offer promising targets for drug treatment for many patients.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Diagnostics Breakthrough Brings Viral Sequencing to Doctors’ Toolkit
New screening tool produces up to 10,000-fold improvement in viral matches compared with traditional high-throughput methods.
Monday, September 28, 2015
GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Predicting Cancer’s Next Move
Research offers a new approach to studying drug resistance in cancer.
Monday, November 11, 2013
Understanding Triglycerides’ Role in Coronary Disease
The study leverages new genetic data from a related genome-wide association study, suggests that lowering triglyceride levels through treatment may help reduce the risk of coronary heart disease.
Wednesday, October 09, 2013
Better Living through Proteomics
As a patient facing illness, knowing what’s ailing you can bring peace of mind and, more importantly, can inform treatment decisions.
Monday, September 09, 2013
Chemical Screen Points to New Line of Attack Against Neuroblastoma
In the war on neuroblastoma, the current chemical weaponry is reaching its limit.
Monday, June 10, 2013
Broad Institute, Dana-Farber and Novartis Collaborate to Develop Cancer Cell Line Encyclopedia
Scientists have written the 'Book of Cancer Knowledge' to aid future research into drug discovery and personalized medicine.
Friday, March 30, 2012
Work Flows from Advanced Large-Scale Methods for Measuring Proteins
Researchers have created the most comprehensive “parts list” to date for mitochondria, a compendium that includes nearly 1,100 proteins.
Thursday, July 17, 2008
New Tools Enable Large-Scale Studies of Gene Function
A molecular library created by a research team led by scientists at the Broad Institute of MIT and Harvard has promised to accelerate scientists' understanding of the genetics behind cancer.
Monday, April 10, 2006
Broad Institute Standardizes on Thermo’s MBS Satellite Thermal Cycler
215 additional MBS Satellite thermal cyclers purchased for large-scale genome sequencing and analysis.
Thursday, December 01, 2005
Scientific News
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
New Hope for Personalized Treatment of Eczema
Pharmaceutical researchers at Oregon State University have developed a new approach to treat eczema and other inflammatory skin disorders that would use individual tests and advanced science to create personalized treatments based on each person's lipid deficiencies.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos