Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Moffitt Cancer Center Researchers Identify Genetic Variants for Prostate Cancers

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
Researchers have developed a method for identifying aggressive prostate cancers that require immediate therapy.

It relies on understanding the genetic interaction between single nucleotide polymorphisms (SNPs). The goal is to better predict a prostate cancer’s aggressiveness to avoid unnecessary radical treatment.

Their study was published in the online journal PLOS ONE in April.

According to the authors, prostate cancer accounts for 20 percent of all cancers and 9 percent of cancer deaths. It is the most common cancer and was the second leading cause of cancer death in American men in 2012.

“For most prostate cancer patients, the disease progresses relatively slowly,” said study co-author Hui-Yi Lin, Ph.D., assistant member of the Chemical Biology and Molecular Medicine Program at Moffitt. “However, some cases grow aggressively and metastasize. It is often difficult to tell the difference between the two.”

The two treatment options for aggressive prostate cancer — radical surgery and radiation therapy — have negative side effects, such as incontinence and erectile dysfunction. It is why the authors believe there is an urgent need for biomarkers that can identify or predict aggressive types of prostate cancer.

Through examining combinations of genetic variants, or SNP-SNP interactions, the researchers have identified and validated several genetic changes that are related to prostate cancer aggressiveness. Their work also shows that the epithelial growth factor receptor may be the hub for these interactions because it is involved in the growth of blood vessels (angiogenesis), which in turn stimulates tumor growth.

“Our findings identified five SNP-SNP interactions in the angiogenesis genes associated with prostate cancer aggressiveness,” explained study co-author Jong Y. Park, Ph.D., associate member of Moffitt’s Cancer Epidemiology Program. “We successfully detected the genotype combinations that put patients at risk of aggressive prostate cancer and then explored the underlying biological associations among angiogenesis genes associated with aggressive prostate cancer.”

The researchers concluded that the gene network they constructed based on SNP-SNP interactions indicates there are novel relationships among critical genes involved in the angiogenesis pathway in prostate cancer.

“Our findings will help physicians identify patients with an aggressive type of prostate cancer and may lead to better personalized treatment in the future,” Park said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Moffitt, Vermillion Collaborate to Model Improvements in Ovarian Cancer Care
The purpose of the study is to produce clinical and economic data to support a new value-based practice model.
Monday, May 12, 2014
Protein Complex Linked to Cancer Growth May Also Help Fight Tumors
Researchers have discovered a gene expression signature that may lead to new immune therapies for lung cancer patients.
Thursday, July 25, 2013
Scientific News
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!