Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Powerful Gene-Editing Tool Appears to Cause Off-Target Mutations in Human Cells

Published: Wednesday, June 26, 2013
Last Updated: Wednesday, June 26, 2013
Bookmark and Share
Results indicate need to improve precision of CRISPR-Cas RNA-guided nucleases.

In the past year a group of synthetic proteins called CRISPR-Cas RNA-guided nucleases (RGNs) have generated great excitement in the scientific community as gene-editing tools.

Exploiting a method that some bacteria use to combat viruses and other pathogens, CRISPR-Cas RGNs can cut through DNA strands at specific sites, allowing the insertion of new genetic material.  However, a team of Massachusetts General Hospital (MGH) researchers has found a significant limitation to the use of CRISPR-Cas RGNs, production of unwanted DNA mutations at sites other than the desired target.

"We found that expression of CRISPR-Cas RGNs in human cells can have off-target effects that, surprisingly, can occur at sites with significant sequence differences from the targeted DNA site," says J. Keith Joung, MD, PhD, associate chief for Research in the Massachusetts General Hospital (MGH) Department of Pathology and co-senior author of the report receiving online publication in Nature Biotechnology.  "RGNs continue to have tremendous advantages over other genome editing technologies, but these findings have now focused our work on improving their precision."

Consisting of a DNA-cutting enzyme called Cas 9, coupled with a short, 20-nucleotide segment of RNA that matches the target DNA segment, CRISPR-Cas RGNs mimic the primitive immune systems of certain bacteria.  When these microbes are infected by viruses or other organisms, they copy a segment of the invader's genetic code and incorporate it into their DNA, passing it on to future bacterial generations.  If the same pathogen is encountered in the future, the bacterial enzyme called Cas9, guided by an RNA sequence the matches the copied DNA segment, inactivates the pathogen by cutting its DNA at the target site.

About a year ago, scientists reported the first use of programmed CRISPR-Cas RGNs to target and cut specific DNA sites.  Since then several research teams, including Joung's, have succesfully used CRISPR-Cas RGNs to make genomic changes in fruit flies, zebrafish, mice and in human cells – including induced pluripotent stem cells which have many of the characteristics of embryonic stem cells.  The technology's reliance on such a short RNA segment makes CRISPR-Cas RGNs much easier to use than other gene-editing tools called zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), and RGNs can be programmed to introduce several genetic changes at the same time.

However, the possibility that CRISPR-Cas RGNs might cause additional, unwanted genetic changes has been largely unexplored, so Joung's team set out to investigate the occurrence of "off-target" mutations in human cells expressing CRISPR-Cas RGNs.  Since the interaction between the guiding RNA segment and the target DNA relies on only 20 nucleotides, they hypothesized that the RNA might also recognize DNA segments that differed from the target by a few nucleotides.

Although previous studies had found that a single-nucleotide mismatch could prevent the action of some CRISPR-Cas RGNs, the MGH team's experiments in human cell lines found multiple instances in which mismatches of as many as five nucleotides did not prevent cleavage of an off-target DNA segment.  They also found that the rates of mutation at off-target sites could be as high or even higher than at the targeted site, something that has not been observed with off-target mutations associated with ZFNs or TALENs.

"Our results don't mean that RGNs cannot be important research tools, but they do mean that researchers need to account for these potentially confounding effects in their experiments.  They also suggest that the existing RGN platform may not be ready for therapeutic applications," says Joung, who is an associate professor of Pathology at Harvard Medical School.  "We are now working on ways to reduce these off-target effects, along with methods to identify all potential off-target sites of any given RGN in human cells so that we can assess whether any second-generation RGN platforms that are developed will be actually more precise on a genome-wide scale.  I am optimistic that we can further engineer this system to achieve greater specificity so that it might be used for therapy of human diseases."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First Gene that Causes Mitral Valve Prolapse Identified
An international research collaboration led by MGH investigators has identified the first gene in which mutations cause the common form of mitral valve prolapse, a heart valve disorder that affects almost 2.5 percent of the population.
Tuesday, August 11, 2015
Detection, Analysis of 'Cell Dust' may Allow Diagnosis, Monitoring of Brain Cancer
System combining nanotechnology and NMR detects particles shed by brain tumors in bloodstream.
Thursday, November 15, 2012
Circulating Tumor Cells can Reveal Genetic Signature of Dangerous Lung Cancers
MGH-developed device promises improvements in targeted therapy, treatment monitoring.
Friday, July 04, 2008
Gene Variation may Elevate Risk of Liver Tumor in Patients with Cirrhosis
A single alteration in the epidermal growth factor (EFG) gene may greatly increase the risk of developing hepatocellular carcinoma, researchers say.
Tuesday, January 08, 2008
Scientific News
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
New Hope for Personalized Treatment of Eczema
Pharmaceutical researchers at Oregon State University have developed a new approach to treat eczema and other inflammatory skin disorders that would use individual tests and advanced science to create personalized treatments based on each person's lipid deficiencies.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
New Test Detects All Viruses
A new test detects virtually any virus that infects people and animals, according to research at Washington University School of Medicine in St. Louis, where the technology was developed.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos