Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Genome’s 3D Structure Shapes how Genes are Expressed

Published: Wednesday, June 26, 2013
Last Updated: Wednesday, June 26, 2013
Bookmark and Share
Scientists bring new insights to our understanding of the three-dimensional structure of the genome.

Roughly 3 metres of DNA is tightly folded into the nucleus of every cell in our body. This folding allows some genes to be ‘expressed’, or activated, while excluding others.

Dr Tim Mercer and Professor John Mattick from Sydney’s Garvan Institute of Medical Research and Professor John Stamatoyannopoulos from Seattle’s University of Washington analysed the genome’s 3D structure, at high resolution.

Genes are made up of  ‘exons’ and ‘introns’ – the former being the sequences that code for protein and are expressed, and the latter being stretches of noncoding DNA in-between. As the genes are copied, or ‘transcribed’, from DNA into RNA, the intron sequences are cut or ‘spliced’ out and the remaining exons are strung together to form a sequence that encodes a protein. Depending on which exons are strung together, the same gene can generate different proteins.

Using vast amounts of data from the ENCODE project*, Dr Tim Mercer and colleagues have inferred the folding of the genome, finding that even within a gene, selected exons are easily exposed.

“Imagine a long and immensely convoluted grape vine, its twisted branches presenting some grapes to be plucked easily, while concealing others beyond reach,” said Dr Mercer. “At the same time, imagine a lazy fruit picker only picking the grapes within easy reach.

“The same principle applies in the genome. Specific genes and even specific exons, are placed within easy reach by folding.”

“Over the last few years, we’ve been starting to appreciate just how the folding of the genome helps determine how it’s expressed and regulated,”

“This study provides the first indication that the three-dimensional structure of the genome can influence the splicing of genes.”

“We can infer that the genome is folded in such a way that the promoter region — the sequence that initiates transcription of a gene — is located alongside exons, and they are all presented to transcription machinery.”

“This supports a new way of looking at things, one that the genome is folded around transcription machinery, rather than the other way around. Those genes that come in contact with the transcription machinery get transcribed, while those parts which loop away are ignored.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Epigenetic Signatures that Differentiate Triple-Negative Breast Cancers
Australian researchers have identified epigenetic ‘signatures’ that could help clinicians tell the difference between highly aggressive and more benign forms of triple-negative breast cancer.
Tuesday, February 03, 2015
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Study Sheds Light on the Causes of Cerebral Palsy
Wider use of genetic testing in children with CP should be considered.
New Biosensors for Managing Microbial ‘Workers’
Researchers at Harvard’s Wyss Institute have unveiled new biosensors that enable scientists to more effectively control and 'communicate with' engineered bacteria.
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!