Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Variants Predict Response to Breast Cancer Drugs

Published: Tuesday, July 02, 2013
Last Updated: Tuesday, July 02, 2013
Bookmark and Share
Scientists found genetic variations that could be used to identify women who are most likely to benefit from breast cancer prevention drug.

Women with a high risk for developing breast cancer—for example, those with a family history of the disease or a previous tumor—can take certain medications that reduce the chance of developing breast cancer. Tamoxifen and raloxifene, 2 such drugs, are selective estrogen receptor modulators. These drugs work by blocking the effects of estrogen, a hormone that can promote the growth of breast cancer tumors.

To prevent breast cancer, at-risk women may take tamoxifen or raloxifene for 5 years. In rare cases, the drugs can cause dangerous side effects, including blood clots, strokes and endometrial cancer. Many women decide that the chance of success doesn’t outweigh the risk of side effects. If doctors could better predict a patient’s likely response to therapy, more women might benefit from this potentially life-saving strategy.

Dr. James N. Ingle of the Mayo Clinic led an international team—including scientists at the RIKEN Center for Genomic Medicine in Tokyo—to search for genetic markers that might predict treatment failure. They used data from long-running breast cancer prevention trials that involved more than 33,000 high-risk women. The scientists looked for genetic differences between women who developed breast cancer while on treatment and those who remained disease-free. They analyzed 500,000 genetic variations (single-nucleotide polymorphisms, or SNPs) scattered across the genome. The study was supported in part by NIH’s National Cancer Institute (NCI) and National Institute of General Medical Sciences (NIGMS).

In the July 2013 issue of Cancer Discovery, the team reported that 2 SNPs—one in a gene called ZNF423 and the other near a gene called CTSO—tended to differ between women who developed breast cancer while on treatment and those who remained cancer-free. Women who had only the beneficial versions of both SNPs were about 6 times less likely to develop breast cancer than women who had only the high-risk versions.

Neither ZNF423 nor CTSO had previously been associated with breast cancer or the response to these drugs. Further experiments revealed that both genes are involved in estrogen-induced expression of the BRCA1 protein, which is known to affect breast cancer risk.

“Our study reveals the first known genetic factors that can help predict which high-risk women should be offered breast cancer prevention treatment and which women should be spared any unnecessary expense and risk from taking these medications,” Ingle says. “We also discovered new information about how the drugs tamoxifen and raloxifene work to prevent breast cancer.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Markers Predict Malaria Treatment Failure
By comparing 297 parasite genomes to a reference malaria parasite genome, researchers have identified two genetic markers that are strongly associated with the parasites’ ability to resist piperaquine.
Monday, November 07, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
Probe Identifies Schizophrenia Genes That Stunt Brain Development
Scientists have isolated schizophrenia-related gene variants that change gene expression in the brain.
Thursday, September 29, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Genetic Misdiagnoses of Heart Condition
Analysis found several genetic variations previously linked with a heart condition were harmless, leading to condition misdiagnosis.
Wednesday, September 07, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
NIH Funds Precision Medicine
NIH have committed roughly $31M to launch a new program for Transdisciplinary Collaborative Centers for health disparities research.
Friday, July 29, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Gene Limits Desire To Drink Alcohol
Research teams have identified a gene variant that suppresses the desire to drink alcohol.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!