Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Improving Gene Therapy for Eye Diseases

Published: Friday, July 05, 2013
Last Updated: Friday, July 05, 2013
Bookmark and Share
Researchers developed a less invasive technique that delivers genes across the retinas of mouse and monkey eyes.

With further development, the method might be used in people to treat inherited diseases that cause the retina to degenerate and impair sight.

The retina is the light-sensitive tissue at the back of the eye. It converts light into electrical impulses that are sent to the brain through the optic nerve, allowing us to see.

Certain inherited diseases, such as Leber congenital amaurosis (LCA), cause the retina to degenerate and lead to blindness. Scientists have made progress using gene therapy to treat these eye diseases, and several clinical trials are underway. However, the current therapies require inserting a needle through the retina and injecting the engineered virus behind the retina. The procedure can disrupt fragile diseased retinas and delivers the therapy to only a limited region.

A research team led by Drs. John G. Flannery and David V. Schaffer at the University of California, Berkeley, set out to develop an improved approach. The virus typically used for gene therapy in the eye is adeno-associated virus (AAV). This harmless virus can’t normally get through the layers of retinal cells to reach affected photoreceptor cells when injected into the vitreous humor—the more easily accessible gel-like fluid at the center of the eye. The scientists devised an approach to engineer variants of the virus that could get through the retina's layers. They described their work, which was funded in part by NIH’s National Eye Institute (NEI) and the NIH Common Fund, on June 12, 2013, in Science Translational Medicine.

The researchers injected millions of genetically engineered variations of AAVs into the vitreous humor of transgenic mice and selected the variants that reached photoreceptor cells in the retina. After 3 rounds of selection, the scientists identified dozens of AAV variants capable of moving from the vitreous humor into the retina.

The most effective modified AAV, called 7m8, was used for further study. When injected into the vitreous humor of adult mice, 7m8 delivered genes throughout the retina and the optic nerve, but not into surrounding tissues outside of the eye. Using a more specific gene promoter restricted gene expression to photoreceptor cells.

The team tested 7m8 in mouse models of 2 inherited diseases in which mutated genes lead to retinal degeneration. In X-linked retinoschisis (XLRS), mutations in the gene encoding the retinoschisin protein cause splitting of the retina. LCA type 2 is caused by mutations in the RPE65 gene. Injections of 7m8 carrying functional copies of these genes into the vitreous humor improved vision in both mouse models.

The new technique also successfully delivered genes across the retina of adult macaques. The team is now planning to perform additional research to prepare the 7m8 AAV for study in humans. They hope to soon head into early clinical trials.

“Building upon 14 years of research,” Schaffer says, “we have now created a virus that you can inject into the liquid vitreous humor inside the eye and it delivers genes to a very difficult-to-reach population of delicate cells in a way that is surgically much less invasive and safer.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Scientific News
Portable Test Rapidly Detects Zika
To better diagnose and track the disease, scientists are now reporting a new $2 test that in the lab can accurately detect low levels of the virus in saliva.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!