Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Improving Gene Therapy for Eye Diseases

Published: Friday, July 05, 2013
Last Updated: Friday, July 05, 2013
Bookmark and Share
Researchers developed a less invasive technique that delivers genes across the retinas of mouse and monkey eyes.

With further development, the method might be used in people to treat inherited diseases that cause the retina to degenerate and impair sight.

The retina is the light-sensitive tissue at the back of the eye. It converts light into electrical impulses that are sent to the brain through the optic nerve, allowing us to see.

Certain inherited diseases, such as Leber congenital amaurosis (LCA), cause the retina to degenerate and lead to blindness. Scientists have made progress using gene therapy to treat these eye diseases, and several clinical trials are underway. However, the current therapies require inserting a needle through the retina and injecting the engineered virus behind the retina. The procedure can disrupt fragile diseased retinas and delivers the therapy to only a limited region.

A research team led by Drs. John G. Flannery and David V. Schaffer at the University of California, Berkeley, set out to develop an improved approach. The virus typically used for gene therapy in the eye is adeno-associated virus (AAV). This harmless virus can’t normally get through the layers of retinal cells to reach affected photoreceptor cells when injected into the vitreous humor—the more easily accessible gel-like fluid at the center of the eye. The scientists devised an approach to engineer variants of the virus that could get through the retina's layers. They described their work, which was funded in part by NIH’s National Eye Institute (NEI) and the NIH Common Fund, on June 12, 2013, in Science Translational Medicine.

The researchers injected millions of genetically engineered variations of AAVs into the vitreous humor of transgenic mice and selected the variants that reached photoreceptor cells in the retina. After 3 rounds of selection, the scientists identified dozens of AAV variants capable of moving from the vitreous humor into the retina.

The most effective modified AAV, called 7m8, was used for further study. When injected into the vitreous humor of adult mice, 7m8 delivered genes throughout the retina and the optic nerve, but not into surrounding tissues outside of the eye. Using a more specific gene promoter restricted gene expression to photoreceptor cells.

The team tested 7m8 in mouse models of 2 inherited diseases in which mutated genes lead to retinal degeneration. In X-linked retinoschisis (XLRS), mutations in the gene encoding the retinoschisin protein cause splitting of the retina. LCA type 2 is caused by mutations in the RPE65 gene. Injections of 7m8 carrying functional copies of these genes into the vitreous humor improved vision in both mouse models.

The new technique also successfully delivered genes across the retina of adult macaques. The team is now planning to perform additional research to prepare the 7m8 AAV for study in humans. They hope to soon head into early clinical trials.

“Building upon 14 years of research,” Schaffer says, “we have now created a virus that you can inject into the liquid vitreous humor inside the eye and it delivers genes to a very difficult-to-reach population of delicate cells in a way that is surgically much less invasive and safer.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
Diet, Exercise, Smoking Habits and Genes Interact To Affect and Risk
NIH-funded study points to converging factors that drive disease-related inflammation.
Thursday, September 17, 2015
Using Genetic Sequencing to Manage Cancer in Children
A team of scientists have investigated the feasibility of incorporating clinical sequencing information into the care of young cancer patients.
Tuesday, September 15, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Neurons’ Broken Machinery Piles Up in ALS
NIH scientists identify a transport defect in a model of familial ALS.
Thursday, August 13, 2015
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Tuesday, August 04, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
House Votes in Favor of Bill Boosting NIH Funding
The US House of Representatives today overwhelmingly voted in favor of a bill that would increase funding to the NIH by about $10 billion, help speed the development of new drugs, and advance precision medicine initiatives.
Monday, July 13, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Genetic Link For Rare Intestinal Cancer
Researchers recommend screening for people with family history.
Thursday, April 16, 2015
Genetics Help Predict Heart Disease Risk, Statin Benefits
Researchers found that a set of genetic variants could identify people at risk for coronary heart disease and who would benefit most from statin therapy.
Tuesday, March 24, 2015
Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
New Hope for Personalized Treatment of Eczema
Pharmaceutical researchers at Oregon State University have developed a new approach to treat eczema and other inflammatory skin disorders that would use individual tests and advanced science to create personalized treatments based on each person's lipid deficiencies.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos