Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Report a Complete Description of Genes Expression in the Human Retina

Published: Tuesday, July 23, 2013
Last Updated: Tuesday, July 23, 2013
Bookmark and Share
Investigators at Massachusetts Eye and Ear and Harvard Medical School have published the most thorough description of gene expression in the human retina reported to date.

In a study published today in the journal BMC Genomics, Drs. Michael Farkas, Eric Pierce and colleagues in the Ocular Genomics Institute (OGI) at Mass. Eye and Ear reported a complete catalog of the genes expressed in the retina.

The retina is the neural tissue in the back of the eye that initiates vision.  It is responsible to receiving light signals, converting them into neurologic signals and sending those signals to the brain so that we can see.  If one thinks of the eye as a camera, the retina in the “film” in the camera. For these studies, the investigators used a technique called RNA sequencing (RNA-seq) to identify all of the messenger RNAs (mRNAs) produced in the human retina.  The resulting catalog of expressed genes, or transcriptome, demonstrates that the majority of the 20,000+ genes in the human body are expressed in the retina.  This in itself is not surprising, because the retina is a complex tissue comprised of 60 cell types.

In a more surprising result, Dr. Farkas and colleagues identified almost 30,000 novel exons and over 100 potential novel genes that had not been identified previously. Exons are the portions of the genome that are used to encode proteins or other genetic elements.  The investigators validated almost 15,000 of these novel transcript features and found that more than 99 percent of them could be reproducibly detected. Several thousand of the novel exons appear to be used specifically in the retina.  In total, the newly detected mRNA sequence increased the number of exons identified in the human genome by 3 percent.

“While this may not sound like a lot, it shows that there is more to discover about the human genome, and that each tissue may use distinct parts of the genome,” said Dr. Pierce, Director of the OGI and the Solman and Libe Friedman Associate Professor of Ophthalmology, Harvard Medical School.

This work is valuable to help scientists understand how the retina worksand how it is affected by disease. For example, Dr. Pierce and colleagues in the OGI study inherited retinal degenerations, which are common causes of vision loss. These diseases are caused by misspellings or mutations in genes that are needed for vision. To date, investigators have identified more than 200 retinal degeneration disease genes, but still can’t find the cause of disease for up to half of the patients affected by these disorders. Identification of new exons used in the retina may help find the cause of disease in these patients. The transcriptome data can be viewed via the OGI website at http://oculargenomics.meei.harvard.edu/index.php/ret-trans.

Identifying the genetic cause of patients’ retinal degeneration has become especially important with the recent success of clinical trials of gene therapy for RPE65 Leber congenital amaurosis (LCA). As a follow-up to these initial proof-of-concept trials, clinical trials of gene therapy for four other genetic forms of inherited retinal degeneration are currently in progress. Further, studies in animal models have reported successful gene therapy for multiple additional genetic types of IRD. There is thus an unprecedented opportunity to translate research progress into provide sight preserving and/or restoring treatment to patients with retinal degenerative disorders.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
How to Unlock Inaccessible Genes
An international team of biologists has discovered how specialized enzymes remodel the extremely condensed genetic material in the nucleus of cells in order to control which genes can be used.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
'Junk' DNA Plays Role in Preventing Breast Cancer
Supposed "junk" DNA, found in between genes, plays a role in suppressing cancer, according to new research by Universities of Bath and Cambridge.
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
A Cancer’s Surprise Origins, Caught in Action
First demonstration of a melanoma arising from a single cell.
Understanding the Mechanisms Blocking Cancer Cell Growth
DNA damage can lead to gene inactivation or deregulation and cause various diseases such as cancer; however, many DNA repair mechanisms allow cells to survive against such damage.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!