Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protein Complex Linked to Cancer Growth May Also Help Fight Tumors

Published: Thursday, July 25, 2013
Last Updated: Thursday, July 25, 2013
Bookmark and Share
Researchers have discovered a gene expression signature that may lead to new immune therapies for lung cancer patients.

They found that NF-κB, a protein complex known to promote tumor growth, may also have the ability to boost the immune system to eliminate cancerous cells before they harm, as well as promote antitumor responses.

NF-κB is a protein complex that controls gene expression. The regulation of NF-κB also plays an important role in regulating the body’s immune response to infection. Incorrect regulation of NF-kB has been linked to cancer, inflammatory and autoimmune diseases, septic shock, viral infection, and improper immune development.

“New insight into how tumor pathways regulate the anti-tumor immune response may help us to devise new ways for improving immune therapy,” said study lead author Amer Beg, Ph.D., senior member of Moffitt’s Immunology Program. “Studies are now underway to start a clinical trial to determine whether the novel gene expression signature described in this work may help initiate new and better immunotherapy treatments.”

According to Beg, NF-κB proteins regulate key genes involved in immune response, inflammation, cell death and cell growth. Work in his lab is aimed at a better understanding of how NF-κB regulates immune response and how the consequences of impaired regulation of responses are related to disease.

The researchers analyzed the role of NF-κB in lung cancer cells that were used to develop the NF-κB gene signature. Key studies in mice showed that NF-κB can mediate immune rejection of tumors. The studies were then extended to human tumor specimens. “In this study we found that NF-κB activity is strongly associated with immune system T-cell infiltration in lung cancer,” explained study co-author Dung-Tsa Chen, Ph.D., member of the Biostatistics Department at Moffitt. “Multiple genes, capable of enhancing T-cell responses, were found in the NF-κB signature. This means that NF-κB, thought of as a tumor promoter, also helps facilitate an immune response.”

Their finding — that the presence of high levels of NF-κB in lung cancer tumors can act as a suppressor — provides new insight into how tumor pathways regulate the anti-tumor response.

“T-cell presence in tumors can be associated with immune surveillance and improved patient survival,” explained Beg. “The focus of immune therapy, boosting T cell-induced responses against solid tumors, has shown considerable promise. However, tolerance-inducing mechanisms and the presence of suppressive cell types in the tumor microenvironment can dampen the response to immunotherapy. Our findings provide new insights into beneficial pathways that also operate in tumors and can regulate anti-tumor responses.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Moffitt, Vermillion Collaborate to Model Improvements in Ovarian Cancer Care
The purpose of the study is to produce clinical and economic data to support a new value-based practice model.
Monday, May 12, 2014
Moffitt Cancer Center Researchers Identify Genetic Variants for Prostate Cancers
Researchers have developed a method for identifying aggressive prostate cancers that require immediate therapy.
Monday, June 24, 2013
Scientific News
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!