Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Therapy May Curb Kidney Deterioration in Patients with Rare Disorder

Published: Tuesday, July 30, 2013
Last Updated: Tuesday, July 30, 2013
Bookmark and Share
Innovation in mouse model helps researchers distinguish disease mechanisms and biomarkers.

A team led by researchers at the National Institutes of Health has overcome a major biological hurdle in an effort to find improved treatments for patients with a rare disease called methylmalonic acidemia (MMA). Using genetically engineered mice created for their studies, the team identified a set of biomarkers of kidney damage -- a hallmark of the disorder -- and demonstrated that antioxidant therapy protected kidney function in the mice. 

Researchers at the National Human Genome Research Institute (NHGRI), part of NIH, validated the same biomarkers in 46 patients with MMA seen at the NIH Clinical Center. The biomarkers offer new tools for monitoring disease progression and the effects of therapies, both of which will be valuable in the researchers' design of clinical trials for this disease.

The discovery, reported in the July 29, 2013, advance online issue of the Proceedings of the National Academy of Sciences, paves the way for use of antioxidant therapy in a clinical trial for patients with MMA. It also illustrates the mechanisms by which dysfunction of mitochondria -- the power generators of the cell -- affects kidney disease. Mitochondrial dysfunction is a factor not only in rare disorders, such as MMA, but also in a wide variety of common conditions, such as obesity, diabetes and cancer.

MMA affects as many as one in 67,000 children born in the United States. It can have several different causes, all involving loss of function of a metabolic pathway that moderates levels of an organic compound called methylmalonic acid. Affected children are unable to properly metabolize certain amino acids consumed in their diet, which damages a number of organs, most notably the kidneys. 

"Metabolic disorders like MMA are extremely difficult to manage because they perturb the delicate balance of chemicals that our bodies need to sustain health," said Daniel Kastner, M.D., Ph.D., NHGRI scientific director. "Given that every newborn in the United States is screened for a number of inherited metabolic disorders, including MMA, there is a critical need for better understanding of the disease mechanisms and therapies to treat them."

MMA is the most common organic acid disorder and invariably impairs kidney function, which can lead to kidney failure. The most common therapy is a restrictive diet, but doctors must resort to dialysis or kidney transplantation when the disease progresses. MMA patients also suffer from severe metabolic instability, failure to thrive, intellectual and physical disabilities, pancreatitis, anemia, seizures, vision loss and strokes.

"There are no definitive treatments for the management of patients with MMA," said Charles Venditti, M.D., Ph.D., senior author and investigator in the Organic Acid Research Section of NHGRI's Genetics and Molecular Biology Branch. "This study is the culmination of collaboration with the patient community. It uses mouse modelling, coupled with innovations in genomics and biochemical analyses, to derive new insights into the causes of renal injury in MMA. Our studies have improved our understanding of the basic biology underlying MMA, created a novel animal model for testing interventions and, now, led us to the promise of a new therapy."  

The researchers performed the studies using mice bred to carry gene alterations that disrupt the production of the same mitochondrial enzyme that is defective in patients with MMA. These are called transgenic mice. The enzyme, called methylmalonyl-CoA mutase (MUT), is an important component of the chemical process that metabolizes organic acids, specifically methylmalonic acid. 

By measuring gene expression in the transgenic mice using DNA microarrays, researchers discovered 50 biomarkers of gene expression that each indicated declining kidney function. DNA microarrays are silicon chips with many spots to which a given molecule may bind. In this case, the DNA microarrays were used to precisely generate, with the aid of a computer program, a profile of gene expression in a kidney cell.

The researchers chose one of the biomarkers, called lipocalin-2, to test how it correlated with kidney function in 46 MMA patients. Plasma levels of this biomarker rose with kidney deterioration in patients with MMA, and may serve as a valuable indicator of MMA kidney disease progression in the clinic.

"The detection of biomarkers through microarray technology is immensely helpful in pointing to downstream pathways affected by the defective MUT activity," said Irini Manoli, M.D., Ph.D., lead author and a physician scientist and staff clinician in NHGRI's Genetics and Molecular Biology Branch. "The biomarkers provide new plasma or serum tests to follow disease progression in our patients." 

Having discovered these important biomarkers of kidney function, the authors turned to kidney physiology experts on their team to explore the structural changes that occur in MMA disease. They analyzed the rate at which the kidneys filter waste from the blood. Co-author and renal physiology expert Jurgen Schnermann, M.D., and members of his laboratory at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), also part of NIH, demonstrated the early and significant decrease in this rate in MMA mice. 

With further studies, the researchers identified increased production of free radicals in tissues from the mice, as well as in the MMA patients. Detection of free radicals indicates chemical instability in cells, which the researchers sought to remedy with antioxidant therapy. After treating the mice with two forms of dietary antioxidants, the researchers observed that the biomarkers of kidney damage diminished and the faltering kidney filtration rate tapered off. The findings demonstrated that readily available antioxidants can significantly affect the rate of decline of kidney function in transgenic mice, which replicate the kidney disease of MMA.

"The next step will be to translate these findings to the clinic," Dr. Venditti said. "With a progressive disorder like MMA, we are hopeful that we have achieved a laboratory success that our patients will benefit from in the near future."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
Scientific News
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Genetic Approach May Lead to New Treatments for Digestive Diseases
Researchers at UMass Medical School have identified a new molecular pathway critical for maintaining the smooth muscle tone that allows the passage of materials through the digestive system.
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
New Genetic Risk Factors for Myopia Discovered
Genes and environment determine short-sightedness.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
Biomarkers for Profiling Prostate Cancer Patients
Exiqon A/S has announced the publication of validation of prognostic microRNA biomarkers for the aggressiveness of prostate cancer in independent cohorts.
New Neurodevelopmental Syndrome Identified
Study pinpoints underlying genetic mutations, raising hopes for targeted therapies.
Uncovering How Some Breast Cancers Resist Treatment
A targeted therapy for triple-negative breast cancer (TNBC), the most aggressive form of breast cancer, has shown potential promise in a recently published study.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!