Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Alvetex 3D Cell Culture Scaffolds Chosen by Investigators at Massachusetts General Hospital

Published: Wednesday, July 31, 2013
Last Updated: Wednesday, July 31, 2013
Bookmark and Share
Scaffolds chosen for study of bone loss during space flight.

Reinnervate Ltd announced that its Alvetex®Scaffold system has been chosen by a group at Massachusetts General Hospital for the first ever 3D osteocytic cell culture experiments in microgravity.

Assistant Prof. of Medicine Paola Divieti Pajevic‟s group has been successfully using Alvetex®Scaffold to culture murine osteocytes in 3D to better mimic in-vivo growth conditions. Their long term aim is to understand the mechanisms of bone loss during unloading as occurs during prolonged bed rest, microgravity, or in diseases such as osteoporosis. The group has received funding from NIH and NASA to perform an experiment on the International Space Station in late 2014. This will expand their ongoing studies into the effects of bone loss during space flight. The group will culture osteocytes in bioreactors that will automate the process of feeding the cells during the ISS mission. This automatic system was specially designed by their implementation partners, CALM Technologies Inc.

„We are absolutely delighted that Alvetex Scaffold has been chosen for such an important and high profile project‟ said Prof. Stefan Przyborski, CSO and founder of Reinnervate. „3D cell culture is increasingly proving its worth in a wide variety of academic research areas. The ability to re-create more natural cellular structure, organisation and function in vitro is critical to advancing our understanding of basic cellular biology‟ he added.

Richard Rowling, commercial Director at Reinnervate added, „Dr. Divieti Pajevic‟s group looked at many different systems for 3D cell culture, but ultimately needed a simple product that is compatible with histology, to visualise cell structure and reliable recovery of total RNA to study gene expression profiles. Alvetex Scaffold was one of the few commercially available products that met all these criteria. We are really pleased that Alvetex®Scaffold is being used in such a fascinating project‟.

Dr. Divieti-Pajevic‟s group will continue to run experiments with Alvetex®Scaffold at her laboratory in the Endocrine Unit, Massachusetts General Hospital in the run up to the 2014 NASA mission. These experiments act as a control for normal gravitational conditions but also use the NASA developed rotating systems that aim to mimic micro-gravity. However, the go-ahead to run these studies on the ISS now offers the only real way to test their hypotheses.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Making Precision Medicine a Reality
Researchers are one step closer to understanding the genetic and biological basis of diseases like cancer, diabetes, Alzheimer’s and rheumatoid arthritis – and identifying new drug targets and therapies.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Genetic Approach May Lead to New Treatments for Digestive Diseases
Researchers at UMass Medical School have identified a new molecular pathway critical for maintaining the smooth muscle tone that allows the passage of materials through the digestive system.
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
DNA Barcodes Gone Wild
A team of researchers at University of Toronto’s Donnelly Centre and Sinai Health System’s Lunenfeld-Tanenbaum Research Institute (LTRI) has developed a new technology that can stitch together DNA barcodes inside a cell to simultaneously search amongst millions of protein pairs for protein interactions.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!