Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UC Davis "Lab on a Chip" Measures Heart Disease Risk

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
New test mimics artery conditions, detects inflammatory cells linked with atherosclerosis and myocardial infarction.

Using a special microchip that can perform laboratory functions, a team of cardiologists and biomedical engineers from UC Davis has identified cells linked with inflammation and varying degrees of heart disease.

The “lab on a chip,” which is based on technology used to evaluate chemicals and cell-to-cell interactions, may one day lead to a rapid test that doctors could use to better predict, treat and monitor atherosclerosis.

The study is published online in the Proceedings of the National Academy of Sciences of the United States of America.

“Our test provides a good indication of how atherosclerosis actually develops inside coronary arteries,” said Scott Simon, professor of biomedical engineering and a study co-author. “This is an exciting step in developing personalized profiles for heart disease risk.”

Cardiologists agree that inflammation plays an important role in heart disease, but knowing how inflammation affects the risk of a heart attack is a challenge – hence the phenomenon of a patient leaving the doctor’s office with a clean bill of health only to have a heart attack a week later.

“Inflammation likely accounts for aspects of heart disease that traditional indicators such as hypertension, diabetes, smoking and cholesterol don’t assess,” said Ehrin Armstrong, an interventional cardiologist and senior author of the study. “This test measures inflammation in cells of the immune system, opening up new avenues to monitor and treat cardiovascular disease.”

The investigators focused on specific white blood cells called CD14++ and CD16+ monocytes that link in the blood with triglycerides – fats that are risk factors for atherosclerosis. These monocytes become activated by “swallowing” triglycerides and expressing proteins called integrins. While integrins help protect against infection, they also make the monocytes sticky, helping them easily adhere to endothelial cells that line the inner surfaces of blood vessels and promoting plaques that clog arteries and lead to cardiac events.

The team used the “lab on a chip” to study the blood of 35 volunteers with varied levels of baseline triglycerides but who were otherwise healthy, along with the blood of 18 volunteers who each had experienced a heart attack. The small device – only a few square inches in area – forces blood to flow at a speed similar to blood in arteries over a specially treated glass slide that serves as a molecular substrate that models artery walls. The blood is then analyzed using a microscope that detects the relative levels of CD14++, CD16+ and integrins that stick to the substrate.

“Our lab-on-a-chip is unique in that it mimics the conditions in an actual artery during the early stages of atherosclerosis,” said Simon, who developed the technology used in the study.

After eating a high-fat meal to induce an inflammatory state, the blood of the healthy volunteers with varying triglyceride levels revealed that the monocytes had adhered to the chip substrate with sevenfold higher efficiency than other cells, proving that they are accurate biomarkers of inflammation. Further investigation showed that the increased monocyte adhesion was due to increased expression of a specific integrin known as CD11c, which was upregulated after the high-fat meal.

The evaluation of blood samples from patients who had experienced a heart attack showed that levels of CD14++ and CD16+ monocyte adhesion due to the integrin CD11c increased by 100 percent when compared to levels of these cells in the blood of healthy volunteers, indicating that these biomarkers increased proportionate to the level of cardiac disease.

“We can actually see how monocytes in the blood of people with different risks for atherosclerosis and heart attack – ranging from people with low to high triglyceride levels to those who had actually experienced a cardiac event – interact with this model of the artery wall,” said Armstrong. “We are coming close to observing atherosclerosis in action at a personal level.”

The lab-on-a-chip may one day be used to provide a rapid risk assessment tool that could be used in doctors’ offices. It may also be useful as a tool for further research in therapeutics.

“Interventions that target monocyte activation could reduce progression of atherosclerosis. In patients who have already had a heart attack, it is possible that such interventions could also reduce long-term injury to the heart,” said Armstrong.

The interdisciplinary team plans to carry the investigations further to refine their understanding of the cellular mechanisms of atherosclerosis. They would also like to conduct studies on larger populations over long time periods to better determine the predictive utility of the test.

Funding for the study was provided by the National Heart, Lung, and Blood Institute and with a Clinical Research Program Award from the American Heart Association.

Other study authors, all from UC Davis, are Greg Foster and Robert Michael Gower of the Department of Biomedical Engineering, and Kimber Stanhope and Peter Havel of the Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Wednesday, May 04, 2016
Keck Foundation Grant Awarded to UC Davis Researcher
Grant will help fund biomedical project, "In Vivo 3D Imaging Using Bioluminescent Gene Reporters and MRI."
Monday, March 10, 2014
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Drug - Gene 'One-Two' Punch Against Cancer
Researchers identify gene-drug combinations that, together, target and kill cancer cells while not targeting healthy cells.
Drug Candidates Reduce Abnormal Protein Production
New drug candidates improve cell ability to catch miss-folded proteins that could cause deadly diseases.
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
Unravelling the Roots of Insect’s Waterproof Coating
Researchers have identified the genes that control cuticular lipid production in Drosophila, by performing an RNAi screen and using Direct Analysis in Real Time and GC-MS.
RNA Suppresses Inflammation
Researchers identify a long noncoding RNA that regulates innate immunity.
Competition to Decipher RNA-Cancer Link
DREAM challenge aims to find the best algorithms for detecting abnormal RNA molecules in cancer cells.
Red Hair Gene Increases Cancer Mutations
Red hair gene variant drives up skin cancer mutations equivalent to that expected from 21 years of sun exposure.
Type 2 Diabetes Genetics Revealed
The largest study of its kind into type 2 diabetes has produced the most detailed picture to date of the genetics underlying the condition.
Blood Cancer Could be Prevented Before it Develops
New research suggests myeloma could be prevented before it develops out of symptomless condition in bone marrow.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!