Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cancer research Implies Future for Personalized Medicine, Reduction in Animal Testing

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
JoVE, the Journal of Visualized Experiments, has published two new methods for scientists to study and treat tumor growth.

The methods introduce a lab-born, human tissue structure with replicated human biochemistry – offering scientists the opportunity to grow, observe, and ultimately learn how to treat biopsied human tumor cells.

The University Hospital of Würzburg scientists behind the experiment have created a new version of the testing structures known as biological vascularized scaffolds (BioVaSc). Their three-dimensional human-tissue structures are the first of their kind to be built with multiple human cell types. The structures offer two methods for study: a three-dimensional (3D) static system for short term testing that is beneficial for microscopy imaging, and a dynamic system that introduces a flow-simulation to simulate actual conditions of the human body. This is especially helpful in long term studies of metastasis, or, the spreading of cancer cells through the human vascular system.

"Our 3D tumor model is reducing or even replacing animal experiments," said engineer Jenny Reboredo. In their article, Reboredo and her colleagues explained that this human-tissue based testing system could eliminate the potential for the misinterpretation that often accompanies animal testing. Furthermore, this method solves the shortfalls of typical in-vitro testing, which is limited by the lack of intercellular interactions.

The authors also suggest that their use of primary cells derived from tumor biopsies is a "very important step towards personalized medicine." With the method the team has created, a lab could in the future take a biopsy of a cancer cell and do tests to find the most effective treatment before ever administering drugs to the human patient.

Further implications of Reboredo and her colleagues' work involve the use of a BioVaSc-type method for studying non-tumorous diseases. "In the long term we want to be able to develop disease models, especially for diseases where no animal models are available," Reboredo said.

When asked why she and her colleagues published in JoVE, Reboredo noted that their models "can be explained and visualized best in a movie [and] to publish in such a media is made possible by JoVE."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Promise of Newborn Stem Cells to Revolutionize Clinical Practice
In this article Shweta Sharma, PhD, discusses the potential of an Umbilical Cord Blood bank as an untapped source of samples for research and clinical trials.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos