Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cancer research Implies Future for Personalized Medicine, Reduction in Animal Testing

Published: Thursday, August 08, 2013
Last Updated: Thursday, August 08, 2013
Bookmark and Share
JoVE, the Journal of Visualized Experiments, has published two new methods for scientists to study and treat tumor growth.

The methods introduce a lab-born, human tissue structure with replicated human biochemistry – offering scientists the opportunity to grow, observe, and ultimately learn how to treat biopsied human tumor cells.

The University Hospital of Würzburg scientists behind the experiment have created a new version of the testing structures known as biological vascularized scaffolds (BioVaSc). Their three-dimensional human-tissue structures are the first of their kind to be built with multiple human cell types. The structures offer two methods for study: a three-dimensional (3D) static system for short term testing that is beneficial for microscopy imaging, and a dynamic system that introduces a flow-simulation to simulate actual conditions of the human body. This is especially helpful in long term studies of metastasis, or, the spreading of cancer cells through the human vascular system.

"Our 3D tumor model is reducing or even replacing animal experiments," said engineer Jenny Reboredo. In their article, Reboredo and her colleagues explained that this human-tissue based testing system could eliminate the potential for the misinterpretation that often accompanies animal testing. Furthermore, this method solves the shortfalls of typical in-vitro testing, which is limited by the lack of intercellular interactions.

The authors also suggest that their use of primary cells derived from tumor biopsies is a "very important step towards personalized medicine." With the method the team has created, a lab could in the future take a biopsy of a cancer cell and do tests to find the most effective treatment before ever administering drugs to the human patient.

Further implications of Reboredo and her colleagues' work involve the use of a BioVaSc-type method for studying non-tumorous diseases. "In the long term we want to be able to develop disease models, especially for diseases where no animal models are available," Reboredo said.

When asked why she and her colleagues published in JoVE, Reboredo noted that their models "can be explained and visualized best in a movie [and] to publish in such a media is made possible by JoVE."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Scoliosis Linked to Disruptions in Spinal Fluid Flow
A new study in zebrafish suggests that irregular fluid flow through the spinal column brought on by gene mutations is linked to a type of scoliosis that can affect humans during adolescence.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!