Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Funds Research to Explore a Cell Communication Process

Published: Wednesday, August 14, 2013
Last Updated: Wednesday, August 14, 2013
Bookmark and Share
Researchers will investigate the emerging field of extracellular RNA and its role in human health conditions.

The National Institutes of Health announced today it will award $17 million this year for 24 research projects designed to improve scientists’ understanding of a newly discovered type of cell-to-cell communication based on extracellular (outside the cell) RNA, also called exRNA. Through these awards, scientists will explore basic exRNA biology and develop tools and technologies that apply new knowledge about exRNA to the research, diagnosis and treatment of diseases. To unlock the potential of this new scientific field, the awarded research projects will address conditions in which exRNA could play a role, including many types of cancer, bone marrow disorders, heart disease, Alzheimer’s disease and multiple sclerosis.

The collaborative, cross-cutting Extracellular RNA Communication program is supported by the NIH Common Fund and led by a trans-NIH team that includes the National Center for Advancing Translational Sciences (NCATS); National Cancer Institute (NCI); National Heart, Lung, and Blood Institute (NHLBI); National Institute on Drug Abuse (NIDA); and National Institute of Neurological Disorders and Stroke (NINDS).

“We have a tremendous opportunity to explore a recently discovered novel way that cells communicate,” said NIH Director Francis S. Collins, M.D., Ph.D. “Expanding our understanding of this emerging scientific field could help us determine the role extracellular RNA plays in health and disease, and unlocking its mysteries may provide our nation’s scientists with new tools to better diagnose and treat a wide range of diseases.”

Scientists think exRNA can regulate many functions in the body and may have an important role in a variety of diseases, but they still know very little about basic exRNA biology. Most RNA works inside cells to translate genes into proteins that are necessary for organisms to function. Other types of RNA control which proteins and the amount of those proteins the cells make. Until recently, scientists believed RNA worked mostly inside the cell that produced it. Now, recent findings show cells can release RNA in the form of exRNA to travel through body fluids and affect other cells. ExRNA can act as a signaling molecule, communicating with other cells and carrying information from cell to cell throughout the body.

Researchers hope to use some kinds of exRNA as biomarkers, or indicators of the presence, absence or stage of a disease. These biomarkers may enable scientists to understand and diagnose diseases earlier and more effectively. Scientists also will use exRNA to develop molecular treatments for diseases.

“To harness exRNA’s enormous potential for diagnostics and therapeutics in a broad range of diseases, we first need to understand more about different types of exRNA, how cells make and release it, how it travels through the body, how it targets and affects specific cells, and how the amount and type of exRNA can change in disease,” said James Anderson, M.D., Ph.D., director of the Division of Program Coordination, Planning, and Strategic Initiatives, which oversees the NIH Common Fund. “Awards in this exciting new field will help advance our collective understanding of exRNA communication and will enable research in many biomedical research fields.”

Multidisciplinary teams of investigators will carry out research projects in a number of critical scientific areas. NCATS will administer 18 awards through which researchers will develop biomarkers from exRNA and design new ways to use exRNA in treatments. NCI will oversee five projects that address how cells make and release exRNA (biogenesis), how and where exRNA travels through body fluids to other cells (biodistribution), how cells take in exRNA that is traveling through body fluids (uptake), and how exRNA changes the function of cells (effector functions). NIDA will support a project to develop a Data Management and Resource Repository that will house all of the data generated by these projects, including a public ExRNA Atlas website to serve as a community-wide resource for exRNA research standards, protocols, data, tools and technology. Scientists working on these projects will form an ExRNA Consortium to collaborate, share information, and spread knowledge to the larger scientific community and public.

“NCATS develops, demonstrates and disseminates new technologies that catalyze improvements in human health” said NCATS Director Christopher P. Austin, M.D. “These awards epitomize that mission, delving into a brand new area of science to discover new targets for interventions, diagnostics, biomarkers and therapeutics — all of which will speed the path from discovery to improved health.”

The 24 awards are milestone-driven cooperative agreements. Individual projects will be supported for up to five years, except for the Data Management and Resource Repository, which could be supported longer. To learn more about the research projects, visit http://commonfund.nih.gov/exrna/fundedresearch.

Later this year, NIH plans to issue a request for applications to develop an exRNA reference profile, which is a catalog of the types of exRNA found in various body fluids from healthy humans. NHLBI will lead this effort to enable studies on how exRNA profiles of people with diseases differ from those of healthy people.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Scientific News
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Scoliosis Linked to Disruptions in Spinal Fluid Flow
A new study in zebrafish suggests that irregular fluid flow through the spinal column brought on by gene mutations is linked to a type of scoliosis that can affect humans during adolescence.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!