Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Test Could Identify Which Prostate Cancers Require Treatment

Published: Thursday, September 12, 2013
Last Updated: Thursday, September 12, 2013
Bookmark and Share
3-gene biomarker gauges tumor’s aggressiveness.

The level of expression of three genes associated with aging can be used to predict whether seemingly low-risk prostate cancer will remain slow-growing, according to researchers at the Herbert Irving Comprehensive Cancer Center at Columbia University Medical Center. Use of this three-gene biomarker, in conjunction with existing cancer-staging tests, could help physicians better determine which men with early prostate cancer can be safely followed with “active surveillance” and spared the risks of prostate removal or other invasive treatment. The findings were published today in the online edition of Science Translational Medicine.

“The problem with existing tests is that we cannot identify the small percentage of slow-growing tumors that will eventually become aggressive and spread beyond the prostate,” said coauthor Mitchell C. Benson, MD, PhD, George F. Cahill Professor of Urology and chair of urology at CUMC.

In their search for a biomarker for slow-growing prostate cancer, Dr. Abate-Shen and her colleagues, including, coauthor Michael Shen, PhD, professor of medicine and of genetics and development, focused on genes related to aging, particularly those affected by cellular senescence, a natural phenomenon in which older cells cease to divide but remain metabolically active. Cellular senescence is known to play a critical role in tumor suppression in general and has been associated with benign prostate lesions in mouse models and in humans.

Using a technique called gene set enrichment analysis, the CUMC team, led by coauthor Andrea Califano, PhD, Clyde and Helen Wu Professor of Chemical Systems Biology and chair of systems biology, identified 19 genes that are enriched in a mouse model of prostate cancer in which the cancers are invariably indolent. They then used a decision-tree learning model, a type of computer algorithm, to identify three genes—FGFR1, PMP22, and CDKN1A—that together can accurately predict the outcome of seemingly low-risk tumors. Tumors that test negative for the biomarker are deemed aggressive.

In a blinded retrospective study, the researchers tested the prognostic accuracy of the three-gene panel on initial biopsy specimens from 43 patients who had been monitored for at least 10 years with active surveillance at CUMC. All the patients had first been diagnosed with low-risk prostate cancer (as defined by several measures, including a Gleason score of 6 or less). Of the 43 patients, 14 ultimately developed advanced prostate cancer. All 14 were correctly identified by the test.

“The bottom line is that, at least in our preliminary trial, we were able to accurately predict which patients with low-risk prostate cancer would develop advanced prostate cancer and which ones would not,” said Dr. Abate-Shen.

The researchers plan to evaluate the test in a larger, prospective clinical trial, led by Dr. Benson and coauthor Sven Wenske, MD, assistant professor of urology at CUMC.

Physicians currently use several tests to diagnose prostate cancer and stage its aggressiveness. The process begins with a prostate-specific antigen (PSA) test, a digital rectal exam, or both. If these tests raise concerns, the patient is typically advised to undergo a biopsy, in which samples of prostate tissue are examined for the presence of cancer cells. If malignant cells are detected, the patient is given a Gleason score (ranging from 2 to 10), a measure of the severity of the cancer based on the cells’ appearance. Patients with high Gleason scores (8 or above) are usually advised to undergo immediate treatment, while those with very low Gleason scores (5 or below) are usually advised to undergo active surveillance. “But it’s not so clear what to do for patients with low (Gleason 6) or even intermediate (Gleason 7) scores,” said Dr. Abate-Shen.

Men with seemingly low-risk prostate cancer currently have two basic choices. One is regular testing and monitoring, also known as active surveillance, which risks missing the window when the disease is localized and potentially curable. The other is aggressive treatment, which risks serious side effects such as urinary incontinence and impotence.

The paper is titled, “A molecular signature predictive of indolent prostate cancer.” The other contributors are Shazia Irshad, Mukesh Bansal, Alvaro Aytes, Tian Zheng, Paolo Guarnieri, Pavel Sumazin, and Clémentine Le Magnen (CUMC) and Mireia Castillo-Martin (Mount Sinai School of Medicine, New York, NY).

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DNA Abnormalities Found in Children with Chronic Kidney Disease
Routine genetic screening of children with CKD could lead to earlier, more precise diagnoses.
Tuesday, April 21, 2015
Patient-Specific Stem Cells and Personalized Gene Therapy
Patients’ own cells transformed into model for studying disease and developing potential treatment.
Saturday, July 12, 2014
Global Study Discovers Flurry of New Alzheimer’s Genes
An international study has uncovered 11 new genes that increase the chance of developing Alzheimer’s disease and provide new clues to ways of fighting it.
Wednesday, October 30, 2013
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
New Hope for Personalized Treatment of Eczema
Pharmaceutical researchers at Oregon State University have developed a new approach to treat eczema and other inflammatory skin disorders that would use individual tests and advanced science to create personalized treatments based on each person's lipid deficiencies.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos