Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

How Old Memories Fade Away

Published: Friday, September 20, 2013
Last Updated: Friday, September 20, 2013
Bookmark and Share
Discovery of a gene essential for memory extinction could lead to new PTSD treatments.

If you got beat up by a bully on your walk home from school every day, you would probably become very afraid of the spot where you usually met him. However, if the bully moved out of town, you would gradually cease to fear that area.

Neuroscientists call this phenomenon “memory extinction”: Conditioned responses fade away as older memories are replaced with new experiences.

A new study from MIT reveals a gene that is critical to the process of memory extinction. Enhancing the activity of this gene, known as Tet1, might benefit people with posttraumatic stress disorder (PTSD) by making it easier to replace fearful memories with more positive associations, says Li-Huei Tsai, director of MIT’s Picower Institute for Learning and Memory.

The Tet1 gene appears to control a small group of other genes necessary for memory extinction. “If there is a way to significantly boost the expression of these genes, then extinction learning is going to be much more active,” says Tsai, the Picower Professor of Neuroscience at MIT and senior author of a paper appearing in the Sept. 18 issue of the journal Neuron.

The paper’s lead authors are Andrii Rudenko, a postdoc at the Picower Institute, and Meelad Dawlaty, a postdoc at the Whitehead Institute.

New and old memories

Tsai’s team worked with researchers in Rudolf Jaenisch’s lab at the Whitehead to study mice with the Tet1 gene knocked out. Tet1 and other Tet proteins help regulate the modifications of DNA that determine whether a particular gene will be expressed or not. Tet proteins are very abundant in the brain, which made scientists suspect they might be involved in learning and memory.

To their surprise, the researchers found that mice without Tet1 were perfectly able to form memories and learn new tasks. However, when the team began to study memory extinction, significant differences emerged.

To measure the mice’s ability to extinguish memories, the researchers conditioned the mice to fear a particular cage where they received a mild shock. Once the memory was formed, the researchers then put the mice in the cage but did not deliver the shock. After a while, mice with normal Tet1 levels lost their fear of the cage as new memories replaced the old ones.

“What happens during memory extinction is not erasure of the original memory,” Tsai says. “The old trace of memory is telling the mice that this place is dangerous. But the new memory informs the mice that this place is actually safe. There are two choices of memory that are competing with each other.”

In normal mice, the new memory wins out. However, mice lacking Tet1 remain fearful. “They don’t relearn properly,” Rudenko says. “They’re kind of getting stuck and cannot extinguish the old memory.”

In another set of experiments involving spatial memory, the researchers found that mice lacking the Tet1 gene were able to learn to navigate a water maze, but were unable to extinguish the memory.

Control of memory genes

The researchers found that Tet1 exerts its effects on memory by altering the levels of DNA methylation, a modification that controls access to genes. High methylation levels block the promoter regions of genes and prevent them from being turned on, while lower levels allow them to be expressed.

Many proteins that methylate DNA have been identified, but Tet1 and other Tet proteins have the reverse effect, removing DNA methylation. The MIT team found that mice lacking Tet1 had much lower levels of hydroxymethylation — an intermediate step in the removal of methylation — in the hippocampus and the cortex, which are both key to learning and memory.

These changes in demethylation were most dramatic in a group of about 200 genes, including a small subset of so-called “immediate early genes,” which are critical for memory formation. In mice without Tet1, the immediate early genes were very highly methylated, making it difficult for those genes to be turned on.

In the promoter region of an immediate early gene known as Npas4 — which Yingxi Li, the Frederick A. and Carole J. Middleton Career Development Assistant Professor of Neuroscience at MIT, recently showed regulates other immediate early genes — the researchers found methylation levels close to 60 percent, compared to 8 percent in normal mice.

“It’s a huge increase in methylation, and we think that is most likely to explain why Npas4 is so drastically downregulated in the Tet1 knockout mice,” Tsai says.

Keeping genes poised

The researchers also discovered why the Tet1-deficient mice are still able to learn new things. During fear conditioning, methylation of the Npas4 gene goes down to around 20 percent, which appears to be low enough for the expression of Npas4 to turn on and help create new memories. The researchers suspect the fear stimulus is so strong that it activates other demethylation proteins — possibly Tet2 or Tet3 — that can compensate for the lack of Tet1.

During the memory-extinction training, however, the mice do not experience such a strong stimulus, so methylation levels remain high (around 40 percent) and Npas4 does not turn on.

The findings suggest that a threshold level of methylation is necessary for gene expression to take place, and that the job of Tet1 is to maintain low methylation, ensuring that the genes necessary for memory formation are poised and ready to turn on at the moment they are needed.

The researchers are now looking for ways to increase Tet1 levels artificially and studying whether such a boost could enhance memory extinction. They are also studying the effects of eliminating two or all three of the Tet enzymes.

“This will not only help us further delineate epigenetic regulation of memory formation and extinction, but will also unravel other potential functions of Tets and methylation in the brain beyond memory extinction,” Dawlaty says.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
How To Identify Drugs That Work Best For Each Patient
Implantable device could allow doctors to test cancer drugs in patients before prescribing chemotherapy.
Monday, April 27, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
Epigenomics of Alzheimer’s Disease Progression
Study of epigenomic modifications reveals immune basis of Alzheimer's disease.
Thursday, February 19, 2015
Proteins Drive Cancer Cells To Change States
When RNA-binding proteins are turned on, cancer cells get locked in a proliferative state.
Monday, December 15, 2014
Genetic Material Hitchhiking in Our Cells May Shape Physical Traits
Explaining the connection between genotype and phenotype must also consider genetic material that doesn’t come from an organism’s chromosomes at all.
Wednesday, May 14, 2014
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Reading DNA, Backward and Forward
MIT biologists reveal how cells control the direction in which the genome is read.
Monday, June 24, 2013
Two MIT Professors Named Howard Hughes Medical Institute Investigators
Peter Reddien and Aviv Regev are among 27 top biomedical scientists selected nationwide.
Friday, May 10, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Possible Role for Huntington’s Gene Discovered
Mutant forms of the gene disrupt chemical modifications that control access to genes necessary for normal brain cell function.
Wednesday, January 16, 2013
New Technology May Enable Earlier Cancer Diagnosis
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.
Friday, December 21, 2012
Precisely Engineering 3-D Brain Tissues
New design technique could enable personalized medicine, studies of brain wiring.
Thursday, November 29, 2012
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Combo Tool
Joining molecular components expands ability to manipulate genes in specific cell types.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Genes Associated With Improved Survival for Pancreatic Cancer Patients
Use of non-invasive liquid biopsies could predict in which patients the cancer could recur following surgery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!