Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Clues to Autoimmune Conditions are Revealed by Genomic Analysis of a Skin Disease

Published: Monday, September 30, 2013
Last Updated: Monday, September 30, 2013
Bookmark and Share
UB researchers’ findings about Pemphigus vulgaris reveal a novel protective mechanism in at-risk individuals who remain healthy.

Researchers studying a rare, blistering skin condition have made a novel discovery:  they have identified a protective mechanism among genetically susceptible individuals who nevertheless remain healthy. The research is providing new clues to why some individuals who carry genetic risk factors for developing autoimmune diseases, do not go on to develop them.

The paper was published in late August in Genes and Immunity, a Nature Publishing Group journal, by researchers at the University at Buffalo’s ’s Clinical and Translational Research Center. The study of the skin condition Pemphigus vulgaris (PV), is the first genome-wide transcriptional analysis of the disease, which allows for a comprehensive survey of disease-related genes.

“Our findings introduce a potentially paradigm-shifting concept of how autoimmunity in general might be kept at bay in genetically susceptible individuals,” explains Animesh A. Sinha, MD, PhD, Rita M. and Ralph T. Behling Professor and Chair of Dermatology in the UB School of Medicine and Biomedical Sciences and lead author on the paper.

PV is an autoimmune skin disorder that results in the often painful blistering of the skin and mucous membranes. Generally treated with corticosteroids and other immunosuppressive agents, the condition is life-threatening if untreated.

According to Sinha, PV is an excellent model for the study of organ-specific human autoimmune disease.

The research, which was initiated at Weill Medical College of Cornell University/New York Hospital and completed at UB, involved the microarray screening of more than 54,000 genes in the blood of 13 patients with active PV, 8 patients in remission and 10 healthy controls. A subset of controls expressed proteins  in their blood previously identified by Sinha to be PV risk factors, but they exhibited no autoimmune symptoms.

Sinha described the goals of the study. “We wanted to establish genetic signatures relevant to the disease in order to define new molecular markers for diagnosis and prognosis, highlight biological pathways involved in the development of the disease, discover novel targets for therapy and try to pinpoint disease susceptibility genes,” he explains.

“It turns out that healthy individuals with a genetic risk factor for developing PV but who are symptom-free, have down-regulated expression of a set of genes in their blood that we found is up-regulated in patients with PV,” he explains.

“This suggests a ‘protection signature’ in healthy individuals carrying these genetic risk elements,” he says.

“We believe that this is the first time that such a protection signature has been identified for any autoimmune condition,” says Sinha. “Eventually, we might be able to leverage information contained within this ‘natural response’ of the immune system against autoimmunity in order to develop entirely new strategies to block disease.

“With this knowledge, it may be possible to identify genes and immune pathways that can be manipulated in patients and at-risk individuals to prevent, or even reverse, the development of autoimmunity,” he concludes.

The research also may make possible the development of more individually-tailored treatments in an era of personalized medicine, he adds.

Co-authors with Sinha are Rama Dey-Rao,PhD, post-doctoral associate and Kristina Seiffert-Sinha, MD, research assistant professor, both of the UB Department of Dermatology.

The research was funded by the Colleck Research Fund, UB’s Behling Dermatology Fund and UB.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Combo Tool
Joining molecular components expands ability to manipulate genes in specific cell types.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Genes Associated With Improved Survival for Pancreatic Cancer Patients
Use of non-invasive liquid biopsies could predict in which patients the cancer could recur following surgery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!