Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemical Signature for Fast Form of Parkinson's Found

Published: Monday, November 25, 2013
Last Updated: Monday, November 25, 2013
Bookmark and Share
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.

Depending on the individual, the disorder can progress rapidly or slowly.

Scientists at UCLA and colleagues have now, for the first time, identified a biochemical signal in the blood associated with the faster-progressing form of Parkinson's. Such a biomarker could help doctors predict early on, just after the onset of motor symptoms, how rapidly the disease will progress. The researchers said they hope blood-based biomarkers like this one will aid in earlier detection and lead to more effective disease management.

The research findings appear in the online edition of the journal PLOS ONE.

Parkinson's disease is the second most common neurodegenerative disorder, afflicting more than 1 percent of all people over 60. Besides Parkinson's effects on walking, speaking and other motor functions, the disease also results in cognitive decline and depression. Further, it places a tremendous burden on caregivers and costs the U.S. an estimated $23 billion annually.

"The course of Parkinson's can be highly variable," said Dr. Beate Ritz, professor and chair of the department of epidemiology at UCLA's Fielding School of Public Health and one of the senior authors of the paper. "Some patients can become wheelchair-bound, demented or severely depressed within just a few years after diagnosis, while others are spared for longer periods."

For the study, the researchers initially drew blood samples from 250 Parkinson's patients in the early stages of the disease who were living the Central Valley region of California. These patients were then followed for five to 10 years. Forty of them were identified as having slow-progressing Parkinson's, and 40 had the fast-progressing form of the disease. Blood samples from patients in both groups were compared to samples from a group of 20 healthy individuals from the same area in California.

The researchers used high-resolution mass spectrometry to identify metabolic or chemical fingerprints in the blood. They discovered a potential biomarker for the fast-progressing type of Parkinson's disease. That biomarker, called N8-acetyl spermidine, was significantly elevated in the rapid progressors, compared with both the slow progressors and the healthy control subjects.

"This is an important step forward in understanding how Parkinson's evolves," said Ritz, who holds a joint appointment as a professor in the UCLA Department of Neurology. "Such biomarkers reflecting the pathogenesis of Parkinson's are greatly needed due to the fact that the degeneration of the neurons in the brain that produce dopamine - a hallmark of Parkinson's disease - is an irreversible process. In addition, that process begins up to 20 to 30 years before imaging can identify any brain changes.

"Our hope is that such biomarkers may aid in earlier detection and more effective disease management, and that they will lead to new prevention strategies and improved clinical trials for new treatments based on a better understanding of how the disease progresses."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Did Inefficient Cellular Machinery Evolve to Fight Viruses and Jumping Genes?
UCSF scientist poses new theory on origins of eukaryotic gene expression.
Monday, November 11, 2013
Single Gene Mutation Linked to Neurological Disorders
Mutation could offer insights into Alzheimer’s, Parkinson’s and Huntigton’s Diseases.
Wednesday, October 16, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Dentistry School Receives $5M to Study Saliva Biomarkers
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.
Thursday, August 15, 2013
Brain Anomolies are Potential Biomarkers for Autism
Brain anomalies may serve as potential biomarkers for the early identification of the neurodevelopmental disorder.
Wednesday, July 10, 2013
Second Amyloid May Play a Role in Alzheimer's
The study is the first to identify deposits of the protein, called amylin, in the brains of people with Alzheimer's disease.
Monday, July 01, 2013
Absence of Gene Leads to Earlier, More Severe Case of Multiple Sclerosis
UCSF finding in animal study may lead to biomarker that predicts course of disease in humans.
Tuesday, June 25, 2013
Studies Illuminate Functions of RNA
Researchers at the University of California illuminate the functional importance of a relatively new class of RNA molecules.
Tuesday, June 11, 2013
Gene Mutation Gives Boost to Brain Cancer Cells
An international team of researchers has found that a singular gene mutation helps brain cancer cells to not just survive, but grow tumors rapidly.
Monday, June 10, 2013
Potential New Way to Suppress Tumor Growth Discovered
The new mechanism opens up the possibility of developing a new class of anti-cancer drugs.
Monday, June 10, 2013
Scientists ID New Kidney Cancer Subtypes
Breakthrough will help physicians tailor treatment to individual kidney cancer patients, moving cancer care one step closer to personalized medicine.
Thursday, April 18, 2013
FDA Names Breast Cancer Drug a Breakthrough Therapy
An experimental drug being investigated for the treatment of advanced breast cancer by researchers at UCLA this week received breakthrough therapy designation from the U.S. FDA.
Monday, April 15, 2013
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Combo Tool
Joining molecular components expands ability to manipulate genes in specific cell types.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Genes Associated With Improved Survival for Pancreatic Cancer Patients
Use of non-invasive liquid biopsies could predict in which patients the cancer could recur following surgery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!