Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Use Nanoscale ‘Patches’ to Sensitize Targeted Cell Receptors

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
Researchers have developed nanoscale “patches” that can be used to sensitize targeted cell receptors, making them more responsive to signals that control cell activity.

The finding holds promise for promoting healing and facilitating tissue engineering research.

The research takes advantage of the fact that cells in a living organism can communicate via physical contact. Specifically, when targeted receptors on the surface of a cell are triggered, the cell receives instructions to alter its behavior in some way. For example, the instructions may cause a stem cell to differentiate into a bone cell or a cartilage cell.

These receptors respond to specific ligands, or target molecules. And those ligands have to be present in certain concentrations in order to trigger the receptors. If there aren’t enough target ligands, the receptors won’t respond.

Now researchers have developed nanoscale patches that are embedded with tiny protein fragments called peptides. These peptides bond to a specific cell receptor, making it more sensitive to its target ligand – meaning that it takes fewer ligand molecules to trigger the receptor and its resulting behavior modification.

“This study shows that our concept can work, and there are a host of potential applications,” says Dr. Thom LaBean, an associate professor of materials science at NC State and senior author of a paper describing the work. “For example, if we identify the relevant peptides, we could create patches that sensitize cells to promote cartilage growth on one side of the patch and bone growth on the other side. This could be used to expedite healing or to enable tissue engineering of biomedical implants.”

“What’s important about this is that it allows us to be extremely precise in controlling cell behavior and gene expression,” says Ronnie Pedersen, a Ph.D. student at Duke University and lead author of the paper. “By controlling which peptides are on the patch, we can influence the cell’s activity. And by manipulating the placement of the patch, we can control where that activity takes place.”

The patch itself is made of DNA that researchers have programmed to self-assemble into flexible, two-dimensional sheets. The sheets themselves incorporate molecules called biotin and streptavidin which serve to hold and organize the peptides that are used to sensitize cell receptors.

“These peptides can bind with cell receptors and sensitize them, without blocking the interaction between the receptors and their target ligands,” Pedersen says. “That’s what makes this approach work.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Potential Ovarian Cancer Biomarker Isolated
Researchers from North Carolina State University utilized a highly sensitive mass spectrometry analysis to identify and measure difficult-to-detect N-glycan biomarkers associated with ovarian cancers in stages I – IV.
Wednesday, September 23, 2015
Transformational Fruit Fly Genome Catalog Completed
Scientists now have a reference manual that should speed gene discoveries in everything from pest control to personalized medicine.
Tuesday, February 14, 2012
NC State University Researcher Discovers Molecules that Inhibit Important Gene Regulators
A NCSU chemist has discovered a molecule that can potentially stop the production of cancer cells at the very beginning of the process of cancer development.
Friday, September 26, 2008
Scientific News
Detecting Alzheimer's with Smell Test
Odour identification test may offer low-cost alternative for predicting cognitive decline and detecting early-stage Alzheimer’s disease.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Drug - Gene 'One-Two' Punch Against Cancer
Researchers identify gene-drug combinations that, together, target and kill cancer cells while not targeting healthy cells.
Drug Candidates Reduce Abnormal Protein Production
New drug candidates improve cell ability to catch miss-folded proteins that could cause deadly diseases.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!