Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Keeping Growth in Check

Published: Friday, December 13, 2013
Last Updated: Friday, December 13, 2013
Bookmark and Share
Ribosomal proteins RPL5 and RPL11 play an essential role in normal cell proliferation.

Researchers from the Laboratory of Cancer Metabolism (LCM) led by George Thomas at the Bellvitge Biomedical Research Institute (IDIBELL), the Catalan Institute of Oncology (ICO) and the Division of Hematology/ Oncology, University of Cincinnati, have shown that loss of either one of two tumor suppressors, ribosomal proteins RPL5 or RPL11, fail to induce cell-cycle arrest, but prevent the proliferation of cells as they have a reduced capacity to synthesize proteins. Thus, unlike other tumor suppressors, RPL5 and RPL11 play an essential role in normal cell proliferation a function cells have evolved to rely on when their levels are suppressed in lieu of a cell-cycle checkpoint.

The results are “Spotlighted” in the December issue of the journal of Molecular Cellular Biology.

Keeping growth in check

Ribosomes are complex protein/ribonucleic acid macromolecular “machines” composed of approximately eighty distinct RPs and four non-coding ribosomal RNAs (rRNA) which translate the genetic code contained in messenger RNAs (mRNA) into functional proteins. Increased protein synthesis is an essential requirement for cell growth and the subsequent division of a parental cell into two daughter cells. The integrity of both events is tightly monitored to prevent deregulated growth and proliferation typical of a number human pathologies including cancer.

The Thomas team has previously shown that RPL5 and RPL11 together with non-coding 5S RRNA have a mutually dependent extra-ribosomal role as tumor suppressors, through their ability to bind Hdm2. This leads to the stabilization of p53, cell cycle arrest and apoptosis. Wild type cells rely on the tumor suppressor role of RPL5 and RPL11 to activate p53 checkpoint when there is an imbalance between the availability of ribosomal components and the demand for protein synthesis. Thus RPs not only support growth and proliferation, but they have a built-in mechanism through the RPL5/RPL11/5S rRNA-Hdm2 inhibitory checkpoint to prevent unwarranted growth.
 
Given the importance of RPL5 and RPL11 in tumor suppression, Teng Teng, a PhD. Student in the Thomas Laboratory at the University of Cincinnati set out to investigate the effect of their depletion on global translation, the induction of p53 and cell-cycle progression in primary human cells. They observed the depletion of either RPL5 or RPL11 unlike depletion of other essential RPs of the 60S ribosomal sub unit did not induce p53 but repressed cell proliferation, suggesting that an alternative cell-cycle checkpoint may regulate cell-cycle progression following their reduced expression. However RPL5 and RPl11 depleted cells did not accumulate in any specific phase of cell cycle.

Instead, as shown by BrdU pulse-chase experiments, they progressed at a much slower rate through each phase of the cell-cycle to a similar extent. This effect was associated with the general inhibition of global protein synthesis, such that mRNAs encoding key cyclins, including those of cyclin E1, A2 and B1 were present on polysomes of a smaller mean size in RPL5 and RPl11 depleted cells as compared to control cells. Consistent with this finding, co-depletion of p53 and RPL7a, another essential 60S RP, blocked the induction of the p53 cell-cycle checkpoint, but did not recue cell growth, as the effects of RPL7a depletions on global translation persisted.

The Thomas laboratory findings are consistent with a recent report highlighting the availability of ribosomes as the rate-limiting step in translation initiation. Thus mammalian cells appear to have evolved a general RPL5/RPL11/5SsRNA-dependent cell-cycle checkpoint in response to impaired or hyperactivated ribosome biogenesis, whereas in the case of lesions in RPL5 or RPL11 they rely on their essential role in ribosomes biogenesis, rather than a cell-cycle checkpoint, to limit proliferation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Discovered a Mechanism that Induces Migration of Tumor Cells in Liver Cancer
Coordinated overactivation of TGFb and CXCR4 signaling pathways confer migratory properties to the hepatocellular carcinoma cells.
Wednesday, November 06, 2013
Identified a Key Protein in Maintaining the Identity of B Lymphocytes
This finding could be useful for the study of blood diseases such as lymphoma and leukemia.
Monday, June 10, 2013
Ángel Carracedo: ''Only 50% of First-Line Drugs are Effective''
The Professor of Legal Medicine and director of the Genomic Medicine lab at the University of Santiago de Compostela, talked of the future challenges of the field of pharmacogenetics in the clinic.
Wednesday, March 20, 2013
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Study Identifies the Off Switch for Biofilm Formation
New discovery could help prevent the formation of infectious bacterial films on hospital equipment.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Combo Tool
Joining molecular components expands ability to manipulate genes in specific cell types.
Team Identifies Structure of Tumor-Suppressing Protein
An international group of researchers led by Carnegie Mellon University physicists Mathias Lösche and Frank Heinrich have established the structure of an important tumor suppressing protein, PTEN.
Genes Associated With Improved Survival for Pancreatic Cancer Patients
Use of non-invasive liquid biopsies could predict in which patients the cancer could recur following surgery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!