Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Point to Enzyme that Restores Function in Diabetic Kidney Disease

Published: Saturday, December 14, 2013
Last Updated: Sunday, December 15, 2013
Bookmark and Share
Data on recent kidney metabolomics findings discussed at the American Society of Nephrology Kidney Week Meeting.

ClinMet announced that researchers from The University of California, San Diego School of Medicine and colleagues have published new findings that could fundamentally change understanding of how diabetes-related diseases develop – and how they might be better treated. A prevailing theory suggests that mitochondrial function is overactive in diabetes and leads to complications such as kidney, eye, nerve and possibly cardiovascular disease. However, these new studies suggest that real-time production of superoxide – a marker of mitochondrial activity – is actually reduced, rather than elevated, in diabetic kidney disease and potentially other organs as well. Furthermore, stimulating mitochondrial production, function and superoxide levels led to improvement in diabetic kidney disease.

The new research, authored by UC San Diego professor and ClinMet scientific founder, Kumar Sharma, M.D., F.A.H.A (Director of the Center for Renal Translational Medicine, Division of Nephrology-Hypertension and the Institute of Metabolomic Medicine) and colleagues, was published online on October 25 in the Journal of Clinical Investigation. ClinMet has an exclusive license to use kidney metabolomics findings by Dr. Sharma and his team in drug development and other applications, based on patents filed by UC San Diego.

“These new data suggest that a major theory on the role of mitochondrial function in diabetic complications has to be questioned,” said Dr. Sharma. “In particular, our findings that an increase in mitochondrial function and superoxide production is associated with improvement in diabetic complications suggest that approaches to stimulate mitochondrial function may be beneficial as a new treatment for diabetic complications.”

“These key insights from a translational research perspective strongly support important concepts identified via metabolomics studies, as illustrated by Dr. Sharma’s publication earlier this month in the Journal of the American Society of Nephrology. They point to the utility of metabolomics technology, like that offered by ClinMet, to gain new insights about disease that can be further confirmed through translational animal studies,” commented Yesh Subramanian, President, Chief Executive Officer and co-founder of ClinMet.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Gene Limits Desire To Drink Alcohol
Research teams have identified a gene variant that suppresses the desire to drink alcohol.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!