Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Adds Substantial Set of Genetic, Health Information to Online Database

Published: Thursday, February 27, 2014
Last Updated: Thursday, February 27, 2014
Bookmark and Share
Researchers will now have access to genetic data linked to medical information on a diverse group of more than 78,000 people.

The data, from one of the nation’s largest and most diverse genomics projects — Genetic Epidemiology Research on Aging (GERA) — have just been made available to qualified researchers through the database of Genotypes and Phenotypes (dbGaP), an online genetics database of the National Institutes of Health.

The GERA cohort — average age 63 — was developed collaboratively by Kaiser Permanente and the University of California, San Francisco (UCSF). The addition of the data to dbGaP was made possible with $24.9 million in support from the National Institute on Aging (NIA) and the National Institute of Mental Health, and the Office of the Director, all at NIH. Catherine Schaefer, Ph.D., of Kaiser Permanente Northern California and Neil Risch, Ph.D., of UCSF are co-principal investigators for GERA.

“Data from this immense and ethnically diverse population will be a tremendous resource for science,” said NIH Director Francis S. Collins, M.D., Ph.D. “It offers the opportunity to identify potential genetic risks and influences on a broad range of health conditions, particularly those related to aging.”

The GERA cohort is part of the Research Program on Genes, Environment, and Health (RPGEH), which includes more than 430,000 adult members of the Kaiser Permanente Northern California system. Data from this larger cohort include electronic medical records, behavioral and demographic information from surveys, and saliva samples from 200,000 participants obtained with informed consent for genomic and other analyses. The RPGEH database was made possible largely through early support from the Robert Wood Johnson Foundation to accelerate such health research.

“The GERA cohort has the largest number of people — of any age — with data in dbGaP,” said NIA Director Richard J. Hodes, M.D. “Federal funds were used to develop new approaches to genomics for this project and I’m pleased that the data are now ready in dbGaP for researchers’ use. I look forward to new insights that such a unique resource might offer for better health with age.”

The genetic information in the GERA cohort translates into more than 55 billion bits of genetic data. Using newly developed techniques, the researchers conducted genome-wide scans to rapidly identify single nucleotide polymorphisms (SNPs) in the genomes of the people in the GERA cohort. These data will form the basis of genome-wide association studies (GWAS) that can look at hundreds of thousands to millions of SNPs at the same time. The RPGEH then combined the genetic data with information derived from Kaiser Permanente’s comprehensive longitudinal electronic medical records, as well as extensive survey data on participants’ health habits and backgrounds, providing researchers with an unparalleled research resource.

In addition to diseases and conditions traditionally associated with aging, such as cardiovascular disease, cancer and osteoarthritis, researchers can explore the potential genetic underpinnings of a variety of diseases that affect people in adulthood, including depression, insomnia, diabetes, certain eye diseases and many others representing a variety of disease domains. Researchers will also be able to use the database to confirm or disprove other studies that use data from relatively small numbers of people, as well as to increase the size and power of their samples by adding participants from GERA to meta-analyses. The large cohort will also serve as a reference source of controls that researchers can compare to individuals with different conditions that they have studied.

“An exciting aspect of this dataset is that it will be updated and refreshed,” noted Winifred Rossi, deputy director of NIA’s Division of Geriatrics and Clinical Gerontology and program officer for the project. “As information is added to the Kaiser-UCSF database, the dbGaP database will also be updated.”

dbGaP was developed and is managed by the National Center for Biotechnology Information, a division of the National Library of Medicine at NIH. Investigators who are interested in applying for access to this database should follow the procedures on the dbGaP website. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Scientific News
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Scoliosis Linked to Disruptions in Spinal Fluid Flow
A new study in zebrafish suggests that irregular fluid flow through the spinal column brought on by gene mutations is linked to a type of scoliosis that can affect humans during adolescence.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!