Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Yale Team Implants Human Innate Immune Cells in Mice

Published: Tuesday, March 18, 2014
Last Updated: Tuesday, March 18, 2014
Bookmark and Share
Groundbreaking study has reproduced human immune function at a level not seen previously.

Overcoming a major limitation to the study of the origins and progress of human disease, Yale researchers report that they have transplanted human innate immune cells into mouse models, which resulted in human immune responses. This groundbreaking study has reproduced human immune function at a level not seen previously, and could significantly improve the translation of knowledge gained from mouse studies into humans. The study is published online in Nature Biotechnology.

The innate immune system is the body’s first line of defense against bacteria and viruses, and provides the adaptive immune system with the necessary information to create custom-made B and T cells that target specific bacterial or viral pathogens. Humanized mice are often used for studies of human immune responses, but until now the translation has been imperfect because existing mouse models do not permit efficient development of human innate immune cells.

The Yale team was able to overcome this obstacle by combining human versions of four genes encoding cytokines — proteins that support immune cell development — when transplanting a human immune system into the mouse. These cytokines support the development and functions of many elements of the innate immune system.

Further, the researchers observed that transplanted disease-fighting human macrophage cells were able to infiltrate a human tumor graft in the mouse strains in a manner similar to what happens in human patients. The authors report that the mice demonstrated a human innate immune response that is essential for early response to foreign invaders.

“It was a lengthy effort to express all those human genes in the mouse, and then to transplant a human immune system,” said first author Anthony Rongvaux, associate research scientist in the Department of Immunobiology at Yale School of Medicine. “But in the end, the result is remarkable. This new model will now allow us to address important questions that remain unanswered about how the human immune system fights infection and cancer.”

“This humanized innate immune system may prove extremely valuable in studying human health and pathology, and may lead to development of new therapies for human disease,” said senior author Richard Flavell, chair and Sterling Professor of Immunobiology at Yale School of Medicine, a member of Yale Cancer Center, and a Howard Hughes Medical Institute investigator.

Other authors are Tim Willinger, Till Strowig, Sofia Gearty, Stephanie Halene, and Lino Teichmann of Yale; Jan Martinek, Florentina Marches, and Karolina Palucka of Baylor University; 
and Yasuyuki Saito and Markus Manz of University Hospital Zurich.

This study was the fruition of a long-term grant from the Bill and Melinda Gates Foundation’s Grand Challenges in Global Health Initiative, which funded the original collaboration between Yale and Regeneron Pharmaceuticals. It was also supported by grants from the National Institutes of Health (CA156689, CA129350, CA84512, and CA140602); the University of Zurich Clinical Research Program; the Juvenile Diabetes Research Foundation
; the Connecticut Stem Cell Research Grants Program; the Baylor Health Care System Foundation; an Institutional Research Grant 58-012-54 from the American Cancer Society; and 
the Leukemia and Lymphoma Society.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
A Faster, Less Expensive Way To Analyze Gene Activity
Yale researchers have devised a method that could reduce the time and cost of analyzing gene activity.
Tuesday, March 03, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Genetic Mutation Causes Lupus in Mice
Discovery could open the way for development of therapies that target the mutation.
Tuesday, January 07, 2014
Biomarkers Indicate Increased Risk of Death After Discharge from Cardiac Surgery
Following cardiac surgery, patients with elevated levels of kidney injury biomarkers are at a significantly higher risk of dying during the next three years, a Yale study has found.
Monday, December 23, 2013
Follow the Genes: Yale Team Finds Clues to Origin of Autism
A team of researchers has pinpointed which cell types and regions of the developing human brain are affected by gene mutations linked to autism.
Wednesday, November 27, 2013
Awakening Genes that Suppress Tumors
When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably.
Tuesday, October 15, 2013
Alzheimer’s Missing Link Found: Is a Promising Target for New Drugs
Researchers have discovered a protein that is the missing link in the complicated chain of events that lead to Alzheimer’s disease.
Monday, September 09, 2013
Lung Disease and Melanoma: a Common Molecular Mechanism?
Researchers have solved a biological mystery about the common genesis of many serious diseases such as asthma and metastatic melanoma.
Monday, September 02, 2013
Loss of Gene Expression may Trigger Cardiovascular Disease
A Yale-led team of researchers has uncovered a genetic malfunction that may lead to hardening of the arteries and other forms of cardiovascular disease.
Friday, November 30, 2012
Lessons from 1000 Genomes: Small Differences Matter
A newly published compendium of the genetic alphabets of more than 1000 individuals from around the world illustrates how similar humans are – but also how crucial genetic variations can be.
Thursday, November 01, 2012
Scientific News
Detecting Alzheimer's with Smell Test
Odour identification test may offer low-cost alternative for predicting cognitive decline and detecting early-stage Alzheimer’s disease.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Drug - Gene 'One-Two' Punch Against Cancer
Researchers identify gene-drug combinations that, together, target and kill cancer cells while not targeting healthy cells.
Drug Candidates Reduce Abnormal Protein Production
New drug candidates improve cell ability to catch miss-folded proteins that could cause deadly diseases.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!