Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Saturated Fat Intake May Influence Person’s Expression of Genetic Obesity Risk

Published: Thursday, June 05, 2014
Last Updated: Thursday, June 05, 2014
Bookmark and Share
Limiting saturated fat could help people whose genetic make-up increases their chance of being obese.

In a new study, researchers from the Jean Mayer USDA Human Nutrition Research Center on Aging (USDA HNRCA) at Tufts University identified 63 gene variants related to obesity and used them to calculate a genetic risk score for obesity for more than 2,800 white, American men and women enrolled in two large studies on heart disease prevention. People with a higher genetic risk score, who also consumed more of their calories as saturated fat, were more likely to have a higher Body Mass Index (BMI), the ratio of body weight to height. 

“We already know there are certain genes that interact with dietary fat and affect BMI,” said senior author José M. Ordovás, Ph.D., director of the Nutrition and Genomics Laboratory at the USDA HNRCA and a professor at the Friedman School of Nutrition Science and Policy at Tufts University. “In the current study, we analyzed dozens of variants of those genes and other genes frequently associated with obesity risk and saw that, while total fat intake was related to higher BMI, people who were genetically predisposed to obesity and ate the most saturated fat had the highest BMIs.”

The findings, which account for possible confounding factors such as age, sex, and physical activity levels, are published online ahead of print in the Journal of the Academy of Nutrition and Dietetics.    

Ordovás and colleagues hypothesize that people who have these gene variants that predispose them to obesity may be more sensitive to saturated fat, which is found mostly in fatty cuts of meats, including beef and pork, as well as butter, cheese and other high-fat dairy products.

“Little is known about the mechanisms that might explain the role of saturated fat intake in obesity,” said Ordovás, who is also a member of the Genetics and Pharmacology & Experimental Therapeutics graduate program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts University. “Some clinical models suggest that saturated fat might interfere with activity in the part of the brain that lets us know we’re full, in addition to a few studies in people that suggest a diet high in saturated fat interferes with satiety. More research is needed to know whether those findings would also apply to gene function.”

Genetic risk score could be useful in identifying people who are predisposed to obesity and could ultimately lead to personalized dietary recommendations. “If further research can clarify a relationship between obesity related genes and saturated fat, people with higher scores would have even more incentive to follow advice to limit their saturated fat intake as part of an obesity prevention strategy,” Ordovás said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
Tuesday, July 19, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Gene Limits Desire To Drink Alcohol
Research teams have identified a gene variant that suppresses the desire to drink alcohol.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!