Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

Significant Step Towards Blood Test for Alzheimer's

Published: Tuesday, July 08, 2014
Last Updated: Tuesday, July 08, 2014
Bookmark and Share
Scientists have identified a set of 10 proteins in the blood which can predict the onset of Alzheimer’s, marking a significant step towards developing a blood test for the disease.

The study, led by King’s College London and UK proteomics company, Proteome Sciences plc,analysed over 1,000 individuals and is the largest of its kind to date.

There are currently no effective long-lasting drug treatments for Alzheimer’s, and it is believed that many new clinical trials fail because drugs are given too late in the disease process. A blood test could be used to identify patients in the early stages of memory loss for clinical trials to find drugs to halt the progression of the disease.

The study, published today in Alzheimer's & Dementia: The Journal of the Alzheimer's Association, is the result of an international collaboration led by King’s College London and Proteome Sciences plc, funded by Alzheimer’s Research UK, the UK Medical Research Council, the National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre and Proteome Sciences.

The researchers used data from three international studies. Blood samples from a total of 1,148 individuals (476 with Alzheimer’s disease; 220 with ‘Mild Cognitive Impairment’ (MCI) and 452 elderly controls without dementia) were analysed for 26 proteins previously shown to be associated with Alzheimer’s disease. A sub-group of 476 individuals across all three groups also had an MRI brain scan.  

Researchers identified 16 of these 26 proteins to be strongly associated with brain shrinkage in either MCI or Alzheimer’s. They then ran a second series of tests to establish which of these proteins could predict the progression from MCI to Alzheimer’s. They identified a combination of 10 proteins capable of predicting whether individuals with MCI would develop Alzheimer’s disease within a year, with an accuracy of 87 percent.

Dr Abdul Hye, lead author of the study from the Institute of Psychiatry at King’s College London, said: “Memory problems are very common, but the challenge is identifying who is likely to develop dementia. There are thousands of proteins in the blood, and this study is the culmination of many years’ work identifying which ones are clinically relevant. We now have a set of 10 proteins that can predict whether someone with early symptoms of memory loss, or mild cognitive impairment, will develop Alzheimer’s disease within a year, with a high level of accuracy.”

Professor Simon Lovestone, senior author of the study from the University of Oxford, who led the work whilst at King’s, said: “Alzheimer’s begins to affect the brain many years before patients are diagnosed with the disease. Many of our drug trials fail because by the time patients are given the drugs, the brain has already been too severely affected.A simple blood test could help us identify patients at a much earlier stage to take part in new trials and hopefully develop treatments which could prevent the progression of the disease. The next step will be to validate our findings in further sample sets, to see if we can improve accuracy and reduce the risk of misdiagnosis, and to develop a reliable test suitable to be used by doctors.”

Dr Eric Karran, Director of Research at Alzheimer’s Research UK, the UK’s leading dementia research charity, said: “As the onset of Alzheimer’s is often slow and subtle, a blood test to identify those at high risk of the disease at an early stage would be of real value.Detecting the first signs of Alzheimer’s could improve clinical trials for new treatments and help those already concerned about their memory, but we’re not currently in a position to use such a test to screen the general population.

“With an ageing population, and age the biggest risk factor for Alzheimer’s, we are expecting rising numbers of people to be affected over the coming years. It’s important to develop new ways to intervene early in the disease to help people maintain their quality of life for as long as possible.”

Dr Ian Pike, co-author of the paper from Proteome Sciences, said: “By linking the best British academic and commercial research, this landmark study in Alzheimer’s disease is a major advance in the development of a simple blood test to identify the disease before clinical symptoms appear. This is the window that will offer the best chance of successful treatment. Equally important, a blood test will be considerably easier and less expensive than using brain imaging or cerebrospinal spinal fluid.

“We are in the process of selecting commercial partners to combine the protein biomarkers in a blood test for the global market, a key step forward to deliver effective and early treatment for this crippling disease.”

Alzheimer’s disease is the most common form of dementia. Globally, it is estimated that 135 million people will have dementia by 2050. In 2010, the annual global cost of dementia was estimated at$604 billion. MCI includes problems with day-to-day memory, language and attention,and can be an early sign of dementia, or a symptom of stress or anxiety. Approximately 10% of people diagnosed with MCI develop dementia within a year but apart from regular assessments to measure memory decline, there is currently no accurate way of predicting who will, or won’t, develop dementia.

Previous studies have also shown that PET brain scans and plasma in lumbar fluid can be used to predict the onset of dementia from MCI. However, PET imaging is highly expensive and lumbar punctures invasive.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Strong Link Between Obesity and 'Carb Breakdown' Gene
Findings suggest that dietary advice may need to be tailored to individual's digestive system.
Monday, March 31, 2014
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
New Hope for Personalized Treatment of Eczema
Pharmaceutical researchers at Oregon State University have developed a new approach to treat eczema and other inflammatory skin disorders that would use individual tests and advanced science to create personalized treatments based on each person's lipid deficiencies.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos