Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
Become a Member | Sign in
Home>News>This Article

GTEx Project to Expand Functional Studies of Genomic Variation

Published: Wednesday, August 06, 2014
Last Updated: Wednesday, August 06, 2014
Bookmark and Share
Larger set of human tissues to be analyzed to contribute to a database and tissue bank that researchers can use to study how genomic variants influence gene activity.

The National Institutes of Health has awarded eight grants as part of the Genotype-Tissue Expression (GTEx) project to explore how human genes are expressed and regulated in different tissues, and the role that genomic variation plays in modulating that expression. The GTEx awards will contribute to a resource database and tissue bank that researchers can use to study how inherited genomic variants – inherited spelling changes in the DNA code – may influence gene activity and lead to disease. The grants will add data from analyses of tissue samples whose collection began in 2010, as well as expand the resource database and tissue bank.

The research groups will receive approximately $9 million in the first year, and nearly $15 million over three years pending the availability of funds. The project is funded by the NIH Common Fund, the National Institute of Mental Health (NIMH) and the National Heart, Lung, and Blood Institute (NHLBI).

“The new studies complement the current GTEx project in assessing genomic variation and gene expression,” explained Simona Volpi, Pharm.D., Ph.D., GTEx program director in the Division of Genomic Medicine at the National Human Genome Research Institute (NHGRI), which helps administer the program. “They delve deeper into what is happening in tissues on a molecular basis to explain how genomic variation affects how genes work. Ultimately, GTEx will provide an atlas of human gene expression.”

The groups plan to further characterize gene activity in tissues by analyzing several molecular phenotypes, or properties of cells – such as which genes are turned on and off, the various ways genes are regulated and the proteins that cells produce based on such regulation. To do this, scientists will examine part of the more than 30 tissue types available, which were collected through autopsies or organ and tissue transplant programs. The project will eventually include samples from about 900 deceased donors. Researchers will analyze DNA and RNA from the samples to identify and catalog genomic variants and gene expression.

For the last decade, scientists have used genome-wide association studies (GWAS) to study the role that genomic variation plays in complex diseases and traits. In GWAS, researchers compare thousands of genomic variants in individuals with a disease with those without the disease, establishing associations with particular variants and the disease being studied. But understanding what specific genomic variants do and how they influence the development of disease has been much more difficult to pinpoint.

By detailing certain features of cells and tissues, such as methylation patterns, protein levels and other characteristics, Dr. Volpi said that the new studies will “help paint a clearer picture of how genomic variation leads to particular diseases.” In methylation, one way that cells control gene expression is by adding chemicals, such as methyl groups.

“A scientist who is studying asthma or kidney cancer might be particularly interested in studying how genomic variants influence gene expression in the lungs or the kidneys, and the GTEx resource will provide this opportunity,” said Jeffery Struewing, M.D., GTEx program director in the NHGRI Division of Genomic Medicine.

The following research groups have been awarded grants (pending available funds)

University of Washington, Seattle, $1.85 million
Principal Investigator: Joshua Michael Akey, Ph.D.

Somatic mutations – genetic mutations that are not inherited, but instead occur randomly or are caused by environmental factors – can play important roles in many diseases and conditions, especially in cancer. But how these mutations contribute to genetic variability and disease susceptibility is not well understood. 

To find out, Dr. Akey and his coworkers plan to sequence the protein-coding genome regions of more than 15 tissue types and look for variations in DNA sequences and structures. Proteins are the working elements within a cell. They are vital for cellular growth, differentiation and repair. They catalyze chemical reactions and provide defense against disease, among myriad other housekeeping functions. The researchers will develop a comprehensive catalog of somatic mutations, which they hope will aid in identifying and interpreting mutations that cause human disease.

Johns Hopkins University, Baltimore, $3.24 million (including co-funding from NIMH)
Principal Investigator: Andrew Feinberg, M.D., M.P.H.

The investigators plan to analyze DNA methylation patterns across the entire genome, though their main focus is on brain regions that are important in schizophrenia, depression and addiction. Methylation is a process by which cells add chemicals – methyl groups – to genes to control their expression. The work will help researchers understand the relationship between DNA methylation, gene expression and gene sequences in human health and disease.

Massachusetts Institute of Technology, Cambridge, $1.25 million
Principal Investigator: Manolis Kellis, Ph.D. 

Most genetic variants linked to disease don’t code for proteins, but instead have subtle gene regulatory roles, such as altering gene activity levels, or affecting the chemical modifications — epigenomic marks — made to DNA that influence which genes are active in which cells. To better understand the effects of these regulatory variants, researchers plan to characterize the epigenomic effects of genetic variation in nine peripheral tissues with roles in diabetes, heart disease, and cancer. The research will help explain how genetic variation leads to changes in gene expression across tissues, and ultimately how these differences affect a person’s predisposition to disease.

Stanford University, Palo Alto, California, $1.22 million
Principal Investigator: Jin Billy Li, Ph.D.

To gauge the influence of genetic variation on gene regulation and expression in different cells and tissues, researchers can attempt to correlate gene expression with the degree to which a gene is turned on or off. One way to do this is to measure allele-specific expression (ASE). Genes come in pairs, or alleles, and sometimes one allele is expressed to a different degree than the other gene allele. 

Dr. Li, co-investigator Stephen Montgomery, Ph.D., and their colleagues plan to examine ASE in different tissue types to try to better understand the interaction between genetic variants that regulate gene expression and potential disease-causing variants.

University of Washington, Seattle, $2.24 million
Principal Investigator: John Stamatoyannopoulos, Ph.D.

Dr. Stamatoyannopoulos and his group plan to study genetic variants in non-protein coding regions of the genome, where most variants reside. They hope to explore how genetic variation in different types of tissues affects regulatory regions in the genome that control gene activity patterns. To do this, they will use a technique called DNase I-sequencing to examine certain areas in the genome and gauge gene regulation within tissue samples from various ethnic groups.

Stanford University, Palo Alto, California, $2.475 million (including co-funding from NHLBI)
Principal Investigators: Michael P. Snyder, Ph.D., and Hua Tang, Ph.D.

The large-scale project aims to characterize the many different ways in which proteins normally vary, across more than nine tissue types. Scientists will catalog protein variants by mass spectroscopy (a technique to identify chemicals by mass and charge), which will help them understand the genetic basis for protein variation. This will be a valuable resource for researchers to understand the genetic basis of complex traits, and ultimately, in predicting individual disease susceptibility. These research results may also help clinicians design individual prevention and treatment strategies.

University of Chicago, $1 million
Principal Investigator: Barbara Stranger, Ph.D.

Investigators plan to characterize the proteome — the entire set of proteins produced by a genome — in several tissue types to determine the genetic basis of variation in protein expression. They will measure the levels of certain types of proteins that are responsible for sending signals in cells, and another group of proteins that act as switches, affecting which genes are turned on. The researchers will then look for variation associated with differences in protein levels to see if variants associated with protein expression have been previously linked to complex diseases. This may enable them to pinpoint specific proteins or protein networks that may underlie such disease.

University of Chicago, $1.375 million
Principal Investigator: Brandon L. Pierce, Ph.D.

Telomeres are DNA caps at the end of chromosomes that are thought to protect cells from aging. The length of telomeres plays an important role in cell division, growth and genome stability, and evidence suggests that telomere shortening over a lifetime may be involved in disease, including heart disease, dementia and cancer. Interestingly, new research suggests that two common gene variants that lead to longer telomeres may actually increase the risk for deadly brain cancers called gliomas. To better determine the role of telomere length in disease development, Dr. Pierce and his colleagues will ask if telomere length in blood reflects its length in tissues usually associated with cancer, and whether telomere length in specific tissues indicates DNA damage and chromosomes that are unstable. They also will try to gauge the role of variants in genes known to affect telomere length and cancer risk in specific tissues.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
Diet, Exercise, Smoking Habits and Genes Interact To Affect and Risk
NIH-funded study points to converging factors that drive disease-related inflammation.
Thursday, September 17, 2015
Using Genetic Sequencing to Manage Cancer in Children
A team of scientists have investigated the feasibility of incorporating clinical sequencing information into the care of young cancer patients.
Tuesday, September 15, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Neurons’ Broken Machinery Piles Up in ALS
NIH scientists identify a transport defect in a model of familial ALS.
Thursday, August 13, 2015
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Tuesday, August 04, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
House Votes in Favor of Bill Boosting NIH Funding
The US House of Representatives today overwhelmingly voted in favor of a bill that would increase funding to the NIH by about $10 billion, help speed the development of new drugs, and advance precision medicine initiatives.
Monday, July 13, 2015
Scientific News
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos