Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

GTEx Project to Expand Functional Studies of Genomic Variation

Published: Wednesday, August 06, 2014
Last Updated: Wednesday, August 06, 2014
Bookmark and Share
Larger set of human tissues to be analyzed to contribute to a database and tissue bank that researchers can use to study how genomic variants influence gene activity.

The National Institutes of Health has awarded eight grants as part of the Genotype-Tissue Expression (GTEx) project to explore how human genes are expressed and regulated in different tissues, and the role that genomic variation plays in modulating that expression. The GTEx awards will contribute to a resource database and tissue bank that researchers can use to study how inherited genomic variants – inherited spelling changes in the DNA code – may influence gene activity and lead to disease. The grants will add data from analyses of tissue samples whose collection began in 2010, as well as expand the resource database and tissue bank.

The research groups will receive approximately $9 million in the first year, and nearly $15 million over three years pending the availability of funds. The project is funded by the NIH Common Fund, the National Institute of Mental Health (NIMH) and the National Heart, Lung, and Blood Institute (NHLBI).

“The new studies complement the current GTEx project in assessing genomic variation and gene expression,” explained Simona Volpi, Pharm.D., Ph.D., GTEx program director in the Division of Genomic Medicine at the National Human Genome Research Institute (NHGRI), which helps administer the program. “They delve deeper into what is happening in tissues on a molecular basis to explain how genomic variation affects how genes work. Ultimately, GTEx will provide an atlas of human gene expression.”

The groups plan to further characterize gene activity in tissues by analyzing several molecular phenotypes, or properties of cells – such as which genes are turned on and off, the various ways genes are regulated and the proteins that cells produce based on such regulation. To do this, scientists will examine part of the more than 30 tissue types available, which were collected through autopsies or organ and tissue transplant programs. The project will eventually include samples from about 900 deceased donors. Researchers will analyze DNA and RNA from the samples to identify and catalog genomic variants and gene expression.

For the last decade, scientists have used genome-wide association studies (GWAS) to study the role that genomic variation plays in complex diseases and traits. In GWAS, researchers compare thousands of genomic variants in individuals with a disease with those without the disease, establishing associations with particular variants and the disease being studied. But understanding what specific genomic variants do and how they influence the development of disease has been much more difficult to pinpoint.

By detailing certain features of cells and tissues, such as methylation patterns, protein levels and other characteristics, Dr. Volpi said that the new studies will “help paint a clearer picture of how genomic variation leads to particular diseases.” In methylation, one way that cells control gene expression is by adding chemicals, such as methyl groups.

“A scientist who is studying asthma or kidney cancer might be particularly interested in studying how genomic variants influence gene expression in the lungs or the kidneys, and the GTEx resource will provide this opportunity,” said Jeffery Struewing, M.D., GTEx program director in the NHGRI Division of Genomic Medicine.

The following research groups have been awarded grants (pending available funds)

University of Washington, Seattle, $1.85 million
Principal Investigator: Joshua Michael Akey, Ph.D.

Somatic mutations – genetic mutations that are not inherited, but instead occur randomly or are caused by environmental factors – can play important roles in many diseases and conditions, especially in cancer. But how these mutations contribute to genetic variability and disease susceptibility is not well understood. 

To find out, Dr. Akey and his coworkers plan to sequence the protein-coding genome regions of more than 15 tissue types and look for variations in DNA sequences and structures. Proteins are the working elements within a cell. They are vital for cellular growth, differentiation and repair. They catalyze chemical reactions and provide defense against disease, among myriad other housekeeping functions. The researchers will develop a comprehensive catalog of somatic mutations, which they hope will aid in identifying and interpreting mutations that cause human disease.

Johns Hopkins University, Baltimore, $3.24 million (including co-funding from NIMH)
Principal Investigator: Andrew Feinberg, M.D., M.P.H.

The investigators plan to analyze DNA methylation patterns across the entire genome, though their main focus is on brain regions that are important in schizophrenia, depression and addiction. Methylation is a process by which cells add chemicals – methyl groups – to genes to control their expression. The work will help researchers understand the relationship between DNA methylation, gene expression and gene sequences in human health and disease.

Massachusetts Institute of Technology, Cambridge, $1.25 million
Principal Investigator: Manolis Kellis, Ph.D. 

Most genetic variants linked to disease don’t code for proteins, but instead have subtle gene regulatory roles, such as altering gene activity levels, or affecting the chemical modifications — epigenomic marks — made to DNA that influence which genes are active in which cells. To better understand the effects of these regulatory variants, researchers plan to characterize the epigenomic effects of genetic variation in nine peripheral tissues with roles in diabetes, heart disease, and cancer. The research will help explain how genetic variation leads to changes in gene expression across tissues, and ultimately how these differences affect a person’s predisposition to disease.

Stanford University, Palo Alto, California, $1.22 million
Principal Investigator: Jin Billy Li, Ph.D.

To gauge the influence of genetic variation on gene regulation and expression in different cells and tissues, researchers can attempt to correlate gene expression with the degree to which a gene is turned on or off. One way to do this is to measure allele-specific expression (ASE). Genes come in pairs, or alleles, and sometimes one allele is expressed to a different degree than the other gene allele. 

Dr. Li, co-investigator Stephen Montgomery, Ph.D., and their colleagues plan to examine ASE in different tissue types to try to better understand the interaction between genetic variants that regulate gene expression and potential disease-causing variants.

University of Washington, Seattle, $2.24 million
Principal Investigator: John Stamatoyannopoulos, Ph.D.

Dr. Stamatoyannopoulos and his group plan to study genetic variants in non-protein coding regions of the genome, where most variants reside. They hope to explore how genetic variation in different types of tissues affects regulatory regions in the genome that control gene activity patterns. To do this, they will use a technique called DNase I-sequencing to examine certain areas in the genome and gauge gene regulation within tissue samples from various ethnic groups.

Stanford University, Palo Alto, California, $2.475 million (including co-funding from NHLBI)
Principal Investigators: Michael P. Snyder, Ph.D., and Hua Tang, Ph.D.

The large-scale project aims to characterize the many different ways in which proteins normally vary, across more than nine tissue types. Scientists will catalog protein variants by mass spectroscopy (a technique to identify chemicals by mass and charge), which will help them understand the genetic basis for protein variation. This will be a valuable resource for researchers to understand the genetic basis of complex traits, and ultimately, in predicting individual disease susceptibility. These research results may also help clinicians design individual prevention and treatment strategies.

University of Chicago, $1 million
Principal Investigator: Barbara Stranger, Ph.D.

Investigators plan to characterize the proteome — the entire set of proteins produced by a genome — in several tissue types to determine the genetic basis of variation in protein expression. They will measure the levels of certain types of proteins that are responsible for sending signals in cells, and another group of proteins that act as switches, affecting which genes are turned on. The researchers will then look for variation associated with differences in protein levels to see if variants associated with protein expression have been previously linked to complex diseases. This may enable them to pinpoint specific proteins or protein networks that may underlie such disease.

University of Chicago, $1.375 million
Principal Investigator: Brandon L. Pierce, Ph.D.

Telomeres are DNA caps at the end of chromosomes that are thought to protect cells from aging. The length of telomeres plays an important role in cell division, growth and genome stability, and evidence suggests that telomere shortening over a lifetime may be involved in disease, including heart disease, dementia and cancer. Interestingly, new research suggests that two common gene variants that lead to longer telomeres may actually increase the risk for deadly brain cancers called gliomas. To better determine the role of telomere length in disease development, Dr. Pierce and his colleagues will ask if telomere length in blood reflects its length in tissues usually associated with cancer, and whether telomere length in specific tissues indicates DNA damage and chromosomes that are unstable. They also will try to gauge the role of variants in genes known to affect telomere length and cancer risk in specific tissues.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
House Votes in Favor of Bill Boosting NIH Funding
The US House of Representatives today overwhelmingly voted in favor of a bill that would increase funding to the NIH by about $10 billion, help speed the development of new drugs, and advance precision medicine initiatives.
Monday, July 13, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Genetic Link For Rare Intestinal Cancer
Researchers recommend screening for people with family history.
Thursday, April 16, 2015
Genetics Help Predict Heart Disease Risk, Statin Benefits
Researchers found that a set of genetic variants could identify people at risk for coronary heart disease and who would benefit most from statin therapy.
Tuesday, March 24, 2015
NIH Grants Aim To Decipher The Language Of Gene Regulation
The GGR program aims to develop new ways for understanding how the genes and switches in the genome fit together as networks.
Tuesday, January 06, 2015
Study Finds Genetic Clue To Menopause-Like Condition In Young Women
NIH-funded research may also contribute to understanding normal menopause.
Thursday, December 18, 2014
Researchers Conduct Comprehensive Genomic Study of Sub-Saharan Africans
New data resource will enhance disease research and genomic diversity studies.
Friday, December 05, 2014
Chromosome Region Linked to Gigantism
Duplication of gene on X chromosome appears to cause excessive growth.
Thursday, December 04, 2014
Comprehensive Genomic Study of Sub-Saharan Africans Conducted
New data resource will enhance disease research and genomic diversity studies.
Thursday, December 04, 2014
Scientists Looking Across Human, Fly and Worm Genomes Find Shared Biology
Studies reveal powerful commonalities in biological activity and regulation among species.
Thursday, August 28, 2014
Pinpointing Genes that Protect Against Frailty
Researchers at Albert Einstein College of Medicine of Yeshiva University have been awarded a $3.3M grant from the NIH to study the role of genetics in protecting against frailty.
Thursday, August 14, 2014
NIH Funds $24M into Alzheimer’s Disease Genome Research
Scientists will analyze genome sequence data to identify gene risk, protective factors.
Tuesday, July 08, 2014
Underlying Genetics and Marker For Stroke Discovered
NIH-funded findings point to new potential strategies for disease prevention, treatment.
Friday, March 21, 2014
NIH Adds Substantial Set of Genetic, Health Information to Online Database
Researchers will now have access to genetic data linked to medical information on a diverse group of more than 78,000 people.
Thursday, February 27, 2014
Scientific News
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Teeth Reveal Lifetime Exposures to Metals, Toxins
Researchers have identified dental biomarkers to reveal links between early iron exposure and late life brain diseases.
Scientists Identify Schizophrenia’s “Rosetta Stone” Gene
Scientists have identified a critical function of what they believe to be schizophrenia’s “Rosetta Stone” gene that could hold the key to decoding the function of all genes involved in the disease.
Could a simple saliva test detect Alzheimer's?
Researchers have presented findings suggesting that a simple, non-invasive diagnostic for Alzheimer's could be within reach.
New Research Advances Genetic Studies in Wildlife Conservation
‘Next-gen’ DNA sequencing of non-invasively collected hair expands field of conservation genetics.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!