We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Using ZetaView to Study Membrane Microparticles

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

PMX Dr Dylan Burger U Ottawa.JPG

The Lab is studying the role of microparticles in the pathogenesis of diabetic vascular and kidney disease. 

Dr Dylan Burger leads a research group at Ottawa Hospital’s Research Institute. Their research focuses on understanding the biological role of membrane vesicles (specifically exosomes and microparticles/microvesicles) in vascular and renal disease. In particular, they are interested in the impact of disease on the rate of formation and molecular makeup of these vesicles. 

They chose the ZetaView system from Particle Metrix for microparticle characterization because it allows them to obtain both quantitative information on the number of particles in a particular preparation as well as basic physical information (i.e. size and zeta potential). This has utility for in assessment of vesicles as biomarkers but also in quality control in vesicle preparations. When coupled with fluorescence detection, it also allows for immunophenotyping of vesicles to determine cell origin or vesicle content. 

Talking about his experiences in particle characterization prior to the use of Zetaview, Dr Burger said “We have previously used electron microscopy, dynamic light scattering, flow cytometry, tunable resistive pulse sensing along with other nanoparticle tracking analysis systems. Now, with ZetaView, we have a system which delivers high detection sensitivity over a range of samples. These may be detected at low concentration levels and we have the ability to visualize fluorescent particles as well as to measure zeta potential in real time. The automation of the system (auto-alignment and autofocusing) expedites analysis and also allows for better across-lab standardization. Low maintenance needs allow us to use this system on a daily basis. Last but not least, we like that the system has a very small footprint so can be placed anywhere in a standard biomedical laboratory.”