Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Therapy for Muscular Dystrophy Fixes Frail Muscle Cells in Animal Model

Published: Monday, January 02, 2006
Last Updated: Tuesday, January 03, 2006
Bookmark and Share
Researchers used gene therapy to introduce a healthy copy of the gene dystrophin into mice with a condition that mimics muscular dystrophy.

A study by researchers at Stanford University School of Medicine has demonstrated that a new gene therapy technique that has shown promise in skin disease and hemophilia might one day be useful for treating muscular dystrophy.

In the study, scheduled to be published online in the Proceedings of the National Academy of Sciences the week of Jan. 2, the researchers used gene therapy to introduce a healthy copy of the gene dystrophin into mice with a condition that mimics muscular dystrophy.

The dystrophin gene is mutated and as a result produces a defective protein in the roughly 20,000 people in the United States with the most common form of the disease.

Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences, said that researchers have tried several different techniques with variable success.

One hurdle is getting genes into muscle cells all over the body. Another is convincing those cells to permanently produce the therapeutic protein made by those genes.

Rando said the PNAS paper highlights an additional requirement for any gene therapy to be successful: the introduced gene must produce healthy dystrophin protein in large quantities in order to repair the entire muscle cell.

Previous muscular dystrophy gene therapy studies did not look at whether the introduced dystrophin spread along the entire length of the muscle cell, which can be many millimeters long in mice or inches long in humans.

In the upcoming paper Bertoni used a standard gene therapy method to introduce two genes - dystrophin and a gene that makes a glowing protein - into mice with a mouse version of muscular dystrophy.

She found that in mice producing insufficient dystrophin, she could see the glowing protein slowly leak out of the cell. This leakiness is a sign that the cell is not healed.

In contrast, when she used Calos' gene therapy technique to introduce the genes, the muscle cell contained high levels of dystrophin distributed along the length of the cell and the glowing protein stayed within the cell, suggesting that the abundant dystrophin repaired the ailing muscle.

"If you have a single cell that's a foot long and you only correct a few inches, you've done very little," Rando said, "Whereas if you correct it from end to end, you truly cure the disease in that cell."

"I think our approach has a lot of potential to overcome issues that have slowed the field of gene therapy," Calos said.

Calos said her approach has two advantages: one is that in her method the gene gets inserted directly into the cell's own DNA, which is why the correction is permanent. In some other methods the gene stays outside the DNA and slowly breaks down.

The second advantage is that her method doesn't rely on a virus to disperse the DNA and therefore avoids some of the issues, including cancer and an immune reaction, that have turned up in viral gene therapy trials. Instead this approach uses naked DNA that travels through the bloodstream to cells of the body.

For his part, Rando said that no matter how well gene therapy works in an isolated muscle, researchers still must figure out how to get that gene to muscles throughout the body.

Despite the remaining hurdles, both Rando and Calos said that their study is a step towards eventually treating muscular dystrophy and other diseases using gene therapy. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Monday, June 20, 2016
Ultra-Sensitive Test for Cancers, HIV
Test developed that is thousands of times more sensitive than current diagnostics.
Tuesday, March 15, 2016
Marker Identifies Most Basic Form of Blood Stem Cell
Nearly 30 years after the discovery of the hematopoietic stem cell, Stanford researchers have found a marker that allows them to study the version of these stem cells that continues to replicate.
Wednesday, February 17, 2016
Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Novel Approach to Understanding Brain Function
Russell Poldrack scanned his brain to create the most detailed map of brain connectivity ever.
Monday, December 14, 2015
Gene Linked to Heart Failure
Researchers have identified a previously unknown association between heart function and the narcolepsy-linked orexin receptor pathway, a finding that could provide a promising direction for treatment research.
Wednesday, December 02, 2015
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Thursday, August 20, 2015
Identifying Defective Heart Genes
A new technique could eventually enable doctors to diagnose genetic heart diseases by rapidly scanning more than 85 genes known to cause cardiac anomalies.
Thursday, August 13, 2015
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Friday, July 31, 2015
Scientists Discern Signatures of Old Versus Young Stem Cells
A chemical code scrawled on histones determines which genes in that cell are turned on and which are turned off.
Wednesday, July 03, 2013
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Drug - Gene 'One-Two' Punch Against Cancer
Researchers identify gene-drug combinations that, together, target and kill cancer cells while not targeting healthy cells.
Drug Candidates Reduce Abnormal Protein Production
New drug candidates improve cell ability to catch miss-folded proteins that could cause deadly diseases.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Diagnostic Thread - Weaving the Future?
Researchers have created diagnostic threads that could pave the way for next-gen implantable and wearable diagnostics.
Unravelling the Roots of Insect’s Waterproof Coating
Researchers have identified the genes that control cuticular lipid production in Drosophila, by performing an RNAi screen and using Direct Analysis in Real Time and GC-MS.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!