Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cell Research Aims to Tackle Parkinson's Disease

Published: Wednesday, January 23, 2008
Last Updated: Wednesday, January 23, 2008
Bookmark and Share
New ways to grow brain cells in the laboratory could eventually provide a way to treat Parkinson's disease, scientists say.

Scientists in Sweden are developing new ways to grow brain cells in the laboratory that could one day be used to treat patients with Parkinson’s disease, an international conference of biologists organized by the European Science Foundation (ESF) was told last week.

Professor Ernest Arenas of the Karolinska Institute in Stockholm presented his research to the EuroSTELLS “Stem Cell Niches” conference in Barcelona on January 11.

Stem cell therapy hold the promise of treating disease by growing new tissues and organs from stem cells – ‘blank’ cells that have the potential to develop into fully mature or ‘differentiated’ cells.

The EuroSTELLS is an ESF EURCORES programme, managed by the European Medical Research Councils (EMRC), that aims to develop a stem cell ‘toolbox’ by generating fundamental knowledge on stem cell biology.

Among the various approaches that are currently being discussed from an ethical perspective, is the possible approach of taking stem cells, growing them into new brain cells and transplanting these into the patient.

“The idea is to start with stem cells and induce them to become neurons,” said Professor Arenas, whose research is carried out as part of a EuroSTELLS collaboration. “These could then be transplanted into the brain of the patient. Also, such cells could be ideal for developing and testing new drugs to treat brain disease.”

However, to create such cells that function efficiently and safely is a major challenge. Early efforts at growing DA neurons from embryonic stem cells produced cells which, when transplanted into animal models, had a tendency to form tumours or clumps, or die without an obvious reason.

Professor Arenas’s team studied the development of DA neurons in animals to determine the important biological molecules in the brain that were necessary for the cells to grow and function efficiently.

The scientists identified one particular molecule that seemed to be key, a protein called Wnt5a. They showed that when this molecule, together with a second protein called noggin, was included in cultures of stem cells, far more DA neurons were produced than when these ingredients were not present.

The team then carried out a series of molecular, chemical and electrophysiological tests on the newly grown neurons to check their proficiency, which was shown to be good.

Crucially the team also moved away from embryonic stem cells – which can be induced to grow into a wide variety of different cells. Instead they used neural stem cells – which are programmed to develop only into nerve cells.

When the researchers transplanted the cells into laboratory animals whose substantia nigra region of the brain was damaged, the results were promising.

“We reversed almost completely the behavioral abnormalities, and neurons differentiated, survived and re-innervated the relevant part of the brain better” Professor Arenas said.

“Furthermore we do not see the kind of proliferation of the cells that has occurred in the past and we get very little clustering when the cells are treated with Wnt5a. The cells are safer than embryonic stem cells and more efficient than fetal tissue.”

Verification of this approach with human cells is ongoing and if the study is successful, it may lead to a clinical trial. Experts in the field have recently identified this approach as the next step in cell replacement therapy for Parkinson’s disease and the hope is that this may, ultimately, lead to cells suitable for transplant into human patients.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Mechanism Discovered Behind Infant Epilepsy
Scientists at Karolinska Institutet and Karolinska University Hospital have discovered a new explanation for severe early infant epilepsy.
Monday, September 07, 2015
Learning the Alphabet of Controlling Gene Expression
Scientists at Karolinska Institutet have made a large step towards the understanding of how human genes are regulated.
Monday, January 21, 2013
Scientific News
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
Custom Tuning Knobs to Turn Off Any Gene
Factory managers can improve productivity by telling workers to speed up, slow down or stop doing tangential tasks while assembling widgets. Unfortunately for synthetic biologists attempting to produce pharmaceuticals, microbes don’t respond to direction like human personnel.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Genetically Mapping the Most Lethal E.Coli Strains
New approach could lead to fewer deaths, and new treatments.
The Spice of Life
Scientists discover important genetic source of human diversity.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!