Corporate Banner
Satellite Banner
Genotyping & Gene Expression
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford Researchers Find Protein Targets for Potential Treatment of Multiple Sclerosis

Published: Monday, February 18, 2008
Last Updated: Monday, February 18, 2008
Bookmark and Share
Stanford researchers have identified therapy targets that could lead to personalized treatments for MS patients at each phase of the illness.

Multiple sclerosis is not a single condition, but an ebbing and flowing of stages affecting the body’s central nervous system. Recognizing that pattern, researchers from the Stanford University School of Medicine have identified therapy targets that could lead to personalized treatments for patients at each phase of the illness.

Essentially, the team cataloged all of the brain-tissue proteins that they found were distinct to three discrete stages of multiple sclerosis.

“This is a gold mine,” said Lawrence Steinman, MD, professor of neurology and neurological sciences. “Knowing what proteins are most important at a discrete stage of the multiple sclerosis process is the first step toward being able to ‘personalize’ treatment.”

Steinman, whose team worked with researchers at the University of Connecticut Health Center, is one of two senior authors of the article that will be published in the Feb. 17 issue of the journal Nature.

In the study, the team found many unexpected proteins involved in the disease progression. When they tested drugs that block two of these proteins in a mouse model of multiple sclerosis, the mice improved dramatically.

“If our hypothesis is correct, the findings can be directly applied to patients,” said May Han, MD, a postdoctoral scholar at Stanford and co-first author of the paper. She emphasized that researchers are still very early in the process of being able to tailor drug therapies for humans.

In multiple sclerosis, the immune system launches an attack against the myelin sheath surrounding nerve cells, causing them to misfire. The resulting variety of neurological disorders affects more than 2.5 million people worldwide, according to the Multiple Sclerosis International Federation.

When Han arrived to work in Steinman’s lab, she suggested studying the amazing repository of multiple sclerosis brain samples still being stored in the lab freezer. The samples had come from Cedric Raine, MD, professor of pathology and of neurology at the Albert Einstein College of Medicine, who had collaborated six years ago with Steinman. Raine had obtained the samples from autopsies of patients with various stages of multiple sclerosis, and he had supplied a detailed analysis of the abnormalities.

Han proposed a novel idea: to use these carefully characterized slices to identify the protein changes between three major types of multiple sclerosis lesions seen upon autopsy—plaques from the acute stage (recent inflammation and damage to myelin), the chronic-active stage (long-term myelin damage and areas of recent inflammation) and the chronic-silent stage (no current inflammation).

Steinman recalled telling Han that it was a great idea, but that his lab didn’t do proteomics, which is the large-scale study of protein structure and function. But Han had a secret weapon: Her brother, David Han, PhD, directs a proteomics analysis facility at the University of Connecticut Health Center. He is the other senior author of the paper.

They identified more than 1,000 different proteins in each stage, creating the largest catalog of multiple sclerosis brain lesions to date. The enormous list of proteins became a bottleneck for the researchers. They used a computer program to identify which proteins are only present in each stage and came up with hundreds of unique proteins for each stage.

They picked two of the proteins found in the chronic-active phase for further exploration: tissue factor, which is involved in the coagulation of blood, and protein C inhibitor, which blocks the anticoagulant protein C. They chose these proteins for several reasons, including the fact that there are FDA-approved drugs that block those proteins, which would allow the researchers to tease apart what was happening.

Also, said Steinman, it was fascinating to explore these drugs, usually used for people with blood clots or hemorrhaging, in the completely different context of a role in a nervous system disorder.

Mice with the symptoms of multiple sclerosis showed improvement in the severity of their disease after being given drugs that block either tissue factor or protein C inhibitor. But treating a mouse is a far cry from helping humans.

“One of the stumbling blocks on this path to personalized medicine is that our samples came from multiple sclerosis brains,” said Steinman. “Ordinarily, one doesn’t stick a needle into a multiple sclerosis brain.” He said there are some intriguing leads from other publications that suggest some of the proteins they found could be detected in cerebrospinal fluid.

“If a person had in their spinal fluid, using our findings as an example, an elevated level of protein C inhibitor, then a doctor could come into the room and say, ‘We have a medicine that will fit you perfectly,’” Steinman said.

This work was funded by the National Institute of Health and the National Multiple Sclerosis Society. Others from Stanford who contributed to this study are: graduate student Jordan Price; postdoctoral scholar Shalina Ousman, PhD; William Robinson, MD, PhD, assistant professor of immunology and rheumatology, and Raymond Sobel, MD, professor of pathology.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Monday, June 20, 2016
Ultra-Sensitive Test for Cancers, HIV
Test developed that is thousands of times more sensitive than current diagnostics.
Tuesday, March 15, 2016
Marker Identifies Most Basic Form of Blood Stem Cell
Nearly 30 years after the discovery of the hematopoietic stem cell, Stanford researchers have found a marker that allows them to study the version of these stem cells that continues to replicate.
Wednesday, February 17, 2016
Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Novel Approach to Understanding Brain Function
Russell Poldrack scanned his brain to create the most detailed map of brain connectivity ever.
Monday, December 14, 2015
Gene Linked to Heart Failure
Researchers have identified a previously unknown association between heart function and the narcolepsy-linked orexin receptor pathway, a finding that could provide a promising direction for treatment research.
Wednesday, December 02, 2015
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Thursday, August 20, 2015
Identifying Defective Heart Genes
A new technique could eventually enable doctors to diagnose genetic heart diseases by rapidly scanning more than 85 genes known to cause cardiac anomalies.
Thursday, August 13, 2015
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Friday, July 31, 2015
Scientists Discern Signatures of Old Versus Young Stem Cells
A chemical code scrawled on histones determines which genes in that cell are turned on and which are turned off.
Wednesday, July 03, 2013
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Blood-brain Barrier on a Chip
Researchers from Vanderbilt University have developed a microfluidic device to study the blood-brain barrier.
Genetic Links to Brain Cancer Cell Growth
Researchers discover clues to tumour behaviour from genetic differences between brain cancer cells and normal tissue cells.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Gene Limits Desire To Drink Alcohol
Research teams have identified a gene variant that suppresses the desire to drink alcohol.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!