Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Dundee Researchers Seek to Beat "Molecular Obesity"

Published: Thursday, January 26, 2012
Last Updated: Thursday, January 26, 2012
Bookmark and Share
Researchers from the University of Dundee have come up with a new innovative approach in the quest to reduce failure rates in the drug discovery process.

Professor Andrew Hopkins and his team from the University’s College of Life Sciences have developed a mathematical formula that they believe has the potential to more effectively identify compounds that have the best chance of being successfully developed into drugs to treat and protect against disease.
 
In order to succeed as a drug, a compound has to have the right balance of properties. Those compounds that are too large or too greasy - said to be molecularly obese - tend not to be well absorbed by the body when taken orally as pills and have been blamed for increasing rates of failure and rising costs in the drug development process.
 
This is why the most commonly used and effective orally dosed drugs that are available on the market tend to be relatively small and lean. Compounds sharing these properties are said to be “drug-like” and assessment of “drug-likeness” is a key consideration when selecting compounds for further development.
 
Until now this assessment has been made according to a widely used set of rules that determine whether or not compounds are suitable for further development as orally absorbed pills.
 
However, the evaluation of drug-likeness in black and white terms does not adequately reflect the whole spectrum of compound quality as many successful drugs apparently ‘break the rules’ so the Dundee team set about developing an alternative model.
 
They have pioneered a measure of drug-likeness based on the concept of desirability called Quantitative Estimate of Druglikeness (QED) which rates a compound between 0-1 based on its molecular properties, with 1 indicating an ideal candidate.
 
Once the scores have been calculated any set of compounds can be easily ranked by their relative merit. Importantly, the formula is derived entirely from historical data on the observed properties of successful drugs. This approach is more flexible than simply attributing a pass or fail to a compound, and offers several advantages to researchers looking to develop new drugs, according to Professor Hopkins.
 
“We think this may be a better way of appraising compounds in drug discovery,” he said. “What we are trying to overcome is a problem of judging which compounds have the lowest risk of failure before synthesizing or buying them. This is important because the cost of drugs is in part driven by the high failure rate in developing new therapies.

“Compounds that don’t have the correct properties or features make them particularly unsuitable, but this doesn’t tell the whole story. Scientists judge them according to the rules, which might suggest a particular compound will work, but not that they will only work to a certain extent and that there are more effective alternatives available.
 
“Over the past two decades the compounds made by the pharmaceutical industry have tended to get larger and greasier. This trend has been called molecular obesity, and while these “obese” compounds may pass the rules they are far from the ideal.
 
“Some experts in the industry argue that the increasing failure rate and increasing cost in developing new drugs may be due to the rise in molecular obesity of new compounds. QED gives us a new tool to guide drug design toward leaner, fitter, more attractive compounds, with hopefully a greater overall chance of success.
 
“The rules which chemists use are useful, but only as far as telling us that it does or doesn’t work. We are trying to get away from the concept of using hard and fast rules and looking instead at the shades of grey, which reflect the reality of the situation. What we are trying to do is increase the odds of identifying a successful compound.”
 
The Dundee team’s work is published in the most recent edition of the Nature Chemistry journal. The paper, entitled ‘Quantifying the chemical beauty of drugs’, is co-authored by colleagues in England and Sweden.
 
After attributing values to several thousand compounds, the researchers asked around 80 chemists to evaluate them based on their own knowledge and scientific methods. This showed that the Dundee method was an effective way of identifying attractive candidates which agreed very well with the chemists’ intuition.
 
Professor Hopkins continued, “Chemists often refer to compounds as looking “good, bad or ugly” according to their suitability, and we asked the chemists who took part in this survey whether a drug was attractive or not, and found their tacit knowledge fitted well with our calculation.
 
“The whole idea is to use statistics, data, and underlying probability distributions which has been gathered on drugs over the years to help us more quickly and effectively identify attractive compounds in the future.
 
“The formula encodes the properties that seem to determine a compound’s attractiveness, and reflects the knowledge required in drug discovery. What we found exciting is the idea of a mathematical formula that reflects the chemists experience and intuition of what they consider an “attractive” compound to synthesise.
 
“From here we can develop a more nuanced approach to identifying lower risk compounds for drug discovery.”
 
The group is working on applying the method to help select new targets from the genomes of bacteria and parasites based on their associated chemical matter as well as using it to aid the drug design process.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualising the Problem may help to Improve Antibiotics
Researchers from the Universities of Dundee and Oxford have made a significant breakthrough in understanding how resistance to antibiotics might be overcome, by producing the first ever 3D molecular image of a key drug target and showing how drugs bind to it.
Monday, January 17, 2011
University of Dundee First to Install Biacore 4000 SPR System
The system will be used to focus on developing biophysical fragment based screening methodologies for efficient drug discovery.
Wednesday, June 16, 2010
New Programme Leader Appointed to Dundee MRC Unit
MRC Protein Phosphorylation Unit recruits Dr Ian Ganley from the Memorial Sloan Kettering Cancer Center.
Tuesday, March 02, 2010
Dundee Centre to Focus on Cancer Prevention and Screening
Cancer experts from across a wide range of disciplines at the University of Dundee are to pool their efforts to push forward research into developing effective programmes of prevention and early screening for the disease.
Monday, October 26, 2009
Scientific News
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
The Need for Speed
Evaluating MALDI-TOF as a high-throughput screening technology for the pharmaceutical industry.
Antarctic Sponge Extract Kills MRSA
New findings may provide opportunity for developing new drugs to fight dangerous bacteria currently highly resistant to treatment.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!