Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UCSF Team Engineers 'Safety Switches' for Immune Therapies

Published: Tuesday, July 31, 2012
Last Updated: Tuesday, July 31, 2012
Bookmark and Share
Team has harnessed a natural protein in bacteria to create a “pause switch” in immune cells, potentially leading to more effective and safer immune therapies.

These “effector proteins” are produced by some bacteria to protect themselves from their host’s immune system and work by  infiltrating immune cells and shutting down the immune response long enough to allow the bacteria to replicate.

In new findings published online July 22 in the journal Nature, the team of cellular engineers showed that they could remove those effector proteins from bacteria and engineer them into yeast or human immune T cells to create a “pause switch” in the engineered cell.

Ultimately, they hope to program that pause switch into immune therapies to make them easier to control and thus less prone to side effects.

Immune therapies are a growing interest in several fields, particularly cancer and autoimmune diseases, such as multiple sclerosis and diabetes. The goal of these therapies is to either bolster the immune system to kill diseased cells, such as cancer cells, or calm down an overactive immune response, as occurs in autoimmune diseases. Immune therapies are showing increasing promise in the clinic, but those therapies can be difficult to control in the body and can end up killing healthy host cells as well as their targets, researchers said.

“There’s a lot of excitement now about harnessing the immune system to combat cancer and autoimmune diseases,” said senior author Wendell Lim, PhD, a Howard Hughes Medical Investigator and professor of Cellular and Molecular Pharmacology at UCSF. “It’s been well established that we can retrain the immune system to attack disease cells, but you have to do it in a controlled way. It’s like learning to ski — the first thing you have to learn is how to stop.”

Normally, when researchers engineer T cells for therapeutic use, the only way to stop those cells from being overactive is to insert DNA encoding a “self-destruct” switch, which destroys the cells. This new approach tells the cells to pause, rather than die.

Lim, who oversees the UCSF Cell Propulsion Lab, focuses his cellular engineering research on creating a cellular tool kit – the brakes, gas and steering wheel — for scientists to insert into biological therapies to control them better, just as we hone chemistry-based drugs to make them more precise and less toxic.

Bacteria, it turns out, are a good source of those tools, with a range of activities that enable them to survive in the hostile environment of the host’s gut or mouth.

“The immune system is always a question of balance. If we can decide when and where these therapies will turn on, the precision will be much higher,” Lim said. “There are a lot of very powerful proteins that pathogens have evolved that we can harness to do that.”

The new findings demonstrated that two bacterial effector proteins — Yersinia pestis effector YopH and the Shigella flexneri OspF protein — could be used to rewire and fine-tune a critical chain of proteins in a cell known as the mitogen-activated protein (MAP) Kinase pathway, which plays an important role in immune responses and in regulating the uncontrolled cell growth associated with cancer.

The authors also showed that the OspF protein could be selectively aimed at one of several MAPK pathways in the same cell, and that this activity can only be restored through new protein synthesis, which slows the immune response even further.

The co-first authors on the paper are Ping Wei and Wilson W. Wong (now at Boston University), both postdoctoral fellows in Lim’s lab in the Department of Cellular & Molecular Pharmacology, and in the Howard Hughes Medical Institute. Co-authors include Jason S. Park, and Sergio G. Peisajovich (now at University of Toronto), also with the department and HHMI; and Ethan Corcoran (now at Northwest Permanente NC) and Arthur Weiss, with HHMI and the UCSF Department of Medicine. The team is also part of the UCSF Cell Propulsion Laboratory and the UCSF Center for Systems and Synthetic Biology.

The research was funded by fellowships from the American Cancer Society, the Li Foundation and the California Institute for Regenerative Medicine, as well as through support from the National Institutes of Health, the National Science Foundation Synthetic Biology and Engineering Research Center, the Packard Foundation and the Howard Hughes Medical Institute.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Ribosome Recycling as a Drug Target
Researchers explain mechanism that recycles bacterial ribosomes stalled on messenger RNAs that lack termination codons.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Toxoplasma’s Balancing Act Explained
Parasite’s method of rewiring our immune response leads to novel tool for drug tests.
Cancer Signaling Pathway Illuminating Way To Therapy
Researchers refine a pro-growth signalling pathway, common to cancers, that can kill cancer cells while leaving healthy cells unharmed.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!