Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Heptares Solves First Family B GPCR Structure

Published: Tuesday, September 11, 2012
Last Updated: Tuesday, September 11, 2012
Bookmark and Share
Heptares Therapeutics has used its StaR® technology to solve entirely in-house the first structure of a Family B sub-class G protein-coupled receptor.

Chief Scientific Officer, Fiona Marshall and Chief Executive Officer, Malcolm Weir, will present views of a high resolution X-ray crystal structure of the Corticotropin Releasing Factor (CRF-1) receptor, together with information about additional novel in-house G protein-coupled receptor (GPCR) structures and Heptares pipeline programmes, at upcoming scientific conferences.

CRF-1, a drug target for depression and anxiety, is a member of the Family B sub-class of nearly 50 GPCRs, which includes many targets such as GLP-1 (diabetes), PTH (bone) and CGRP (migraine) that have proven intractable to small molecule chemistry. Novel and unexpected insights into receptor topology, conformation and compound binding have been revealed, showing major differences compared to the many already known Family A structures, such as beta-adrenergic receptor. Owing to the close relationship among Family B GPCRs, these insights from the CRF structure will allow high-quality structural models to be generated to the entire family and provide new avenues for discovery, which are being leveraged by the Company using its proprietary structure-based drug design platform.

Heptares is also reporting the first structure for the Muscarinic M1 receptor in the agonist conformation, and the first structure for the Orexin-2 receptor in an antagonist confirmation. The M1 structure shows conformational and subtype differences in the ligand binding site compared to muscarinic antagonist-bound structures, and is central to Heptares' selective orthosteric agonist programme for the treatment of Alzheimer's disease and other disorders involving cognitive impairment.

The Orexin-2 structure shows substantial topological differences compared to other peptide Family A receptors, and enables selective drug design to both Orexin-2 (chronic insomnia) and Orexin-1 (anti-craving in addiction and compulsive disorders) subtypes, and modelling of receptor activation.

The Heptares platform is nucleated around its unique ability, using its StaR® technology, to stabilise GPCRs in precisely defined, biologically-relevant conformations. These StaRs® can then be used, based on receptor structural information from X-ray crystallography and Biophysical Mapping™, to design and build (atom-by-atom) small molecules with specified drug action and properties, creating an unparalleled medicinal chemistry capability for addressing extremely difficult GPCR targets.

"No Family B GPCR trans-membrane domain structures have been solved until now, highlighting the power of our StaR® technology. This is a fundamental discovery for GPCR drug design, and for our understanding of the mechanism of action and function of these biologically important receptors," said Fiona Marshall, CSO of Heptares Therapeutics.

"These exciting new structural insights are allowing Heptares to deliver potentially ground-breaking new medicines, which is our sole focus. We have a robust platform and pipeline, with our industry-first selective Muscarinic M1 agonist expected to enter clinical development next year and further programmes for additional CNS and metabolic disorders advancing well," said Malcolm Weir, CEO of Heptares Therapeutics.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Heptares, leadXpro Enter Collaboration
Collaboration aims to employ powerful new approaches for the determination of high-resolution X-ray structures of GPCRs to discover new drug lead compounds.
Thursday, June 30, 2016
Promise of Structure-Based Drug Design for GPCRs
Heptares Therapeutics announces the recent publication of a major review of the state of the art for GPCR drug discovery and new insights that, for the first time, can be obtained from structural biology.
Thursday, May 10, 2012
Scientific News
Influential Cancer Researcher Receives Agilent Thought Leader Award
Biologist Scott Lowe receives award in recognition for his contributions to cancer biology.
Startup Seeks More Precise Prostate Cancer Screening
Gregor Diagnostics aims to bring a non-invasive prostate cancer screening test to the market.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
Preventing "Friendly Fire" in the Pancreas
Researchers inhibit process that leads to the body attacking its own insulin-producing cells.
3D-Printed Heart-On-A-Chip with Integrated Sensors
Researchers have created the first 3D-printed organ-on-a-chip with integrated sensors, paving the way for more complex, customizable devices.
Drug Target for Triple-Negative Breast Cancer Found
A team of researchers led by UC San Francisco scientists has identified a new drug target for triple-negative breast cancer.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Targeting Cannabinoid CB2 Receptors in the CNS
With endogenous cannabinoids considered as a potential target to combat CNS diseases, this article examines the role of CB2R could play in fighting some disorders.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos