Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Missing Pieces of DNA Structure is a Red Flag for Deadly Skin Cancer

Published: Monday, September 17, 2012
Last Updated: Monday, September 17, 2012
Bookmark and Share
Melanoma is the most dangerous type of skin cancer and is the leading cause of death from skin disease. Rates are steadily increasing, and although risk increases with age, melanoma is now frequently seen in young people.

But what if we could pinpoint when seemingly innocuous skin pigment cells mutate into melanoma? Researchers at Brigham and Women's Hospital (BWH) have achieved this. Teams led by Yujiang Geno Shi, PhD, from BWH's Department of Medicine, and George F. Murphy, MD, from BWH's Department of Pathology have discovered a new biomarker for the lethal disease. The findings offer novel opportunities for skin cancer diagnostics, treatment and prevention.

The study will be published on September 14, 2012 in Cell.

"Dr. Shi and colleagues have discovered an exciting new connection between the loss of a specific chemical mark in the genome and the development of melanoma," said Anthony Carter, PhD, of the National Institutes of Health's National Institute of General Medical Sciences, which mainly funded the research. "This work is a prime example of how basic research on mechanisms of epigenetic regulation can yield clinically significant insights that hold great promise for diagnosing and treating cancer."

The researchers found that certain biochemical elements in the DNA of normal pigment-producing skin cells and benign mole cells are absent in melanoma cells. Loss of these methyl groups-known as 5-hmC-in skin cells serves as a key indicator for malignant melanoma. Loss corresponded to more advanced stages of melanoma as well as clinical outcome.

Strikingly, researchers were able to reverse melanoma growth in pre-clinical studies. When the researchers introduced enzymes responsible for 5-hmC formation to melanoma cells lacking the biochemical element, they saw that the cells stopped growing.

"It is difficult to repair the mutations in the actual DNA sequence that are believed to cause cancer," said Christine Lian, MD, a physician scientist in the Department of Pathology at BWH and one of the lead authors. "So having discovered that we can reverse tumor cell growth by potentially repairing a biochemical defect that exists-not within the sequence-but just outside of it on the DNA structure, provides a promising new melanoma treatment approach for the medical community to explore."

Because cancer is traditionally regarded as a genetic disease involving permanent defects that directly affects the DNA sequence, this new finding of a potentially reversible abnormality that surrounds the DNA (thus termed epigenetic) is a hot topic in cancer research, according to the researchers.

In the United States, melanoma is the fifth most common type of new cancer diagnosis in men and the seventh most common type in women. The National Cancer Institute estimates that in 2012 there will be 76,250 new cases and 9,180 deaths in the United States due to melanoma.

The Shi laboratory pioneers studies in both basic chromatin biology and translational epigenetic research at the Endocrine Division, BWH Department of Medicine, and collaborates with Dr. Murphy's laboratory that focuses on melanoma biology in the Program for Dermatopathology, BWH Department of Pathology. This pre-clinical study, which shows a key role for epigenetics in melanoma development and progression, also enlisted the support of an international team of investigators. The findings will provide insight for future functional, pre-clinical studies of 5-hmC in cancer biology.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
Electrical Control of Cancer Cells
Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control these switches.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Determining the Age of Fingerprints
Watch the imprint of a tire track in soft mud, and it will slowly blur, the ridges of the pattern gradually flowing into the valleys. Researchers have tested the theory that a similar effect could be used to give forensic scientists a way to date fingerprints.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Researchers Publish Landmark “Basket Study”
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have announced results from the first published basket study, a new form of clinical trial design that explores responses to drugs based on the specific mutations in patients’ tumors rather than where their cancer originated.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!