Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

CYTOO’s 2D+ Cell Culture Platform Reproduces in vivo Conditions to Study Tumor Cell Motility

Published: Thursday, October 18, 2012
Last Updated: Thursday, October 18, 2012
Bookmark and Share
New perspectives in oncology, genetics and drug screening.

CYTOO S.A. announced new results that demonstrate the ability of the Company’s 2D+ Cell Culture Platform to reproduce in vivo conditions to analyze tumor cell motility and in particular to study fibrillar ECM-dependent tumor cell-macrophage pairing and migration involved in tumor metastasis. These results have recently been published in the first issue of the journal IntraVital, edited by Landes Bioscience.

The CYTOO 2D+ Cell Culture Platform is based on the use of adhesive micropatterns to guide cell architecture and behavior in culture, in contrast to current 2D cell culture where cells spread and move in an uncontrolled manner. By defining the 2D topology of cell adhesion, 2D+ Technology enables the fine control of the spreading and 3D shape of cultured cells in single- or multi-cellular configurations resulting in control of cell contractility, cell polarity, organelle positioning, or cell division axis.

Researchers Ved Sharma, Brian Beaty, Antonia Patsialou, Dianne Cox, John Condeelis and Robert Eddy from the Albert Einstein College of Medicine, NY, with collaborators Huiping Liu from University of Chicago and Michael Clarke at Stamford School of Medicine, used CYTOOchipsTM Motility to reconstitute an in vitro model of fibrillar tumor extracellular matrix (ECM). The micropatterned 1D adhesive tracks were used to mimic the linear ECM fibers of the tumor microenvironment.

Similar morphologies, behaviors and motility rates were observed in vivo and on micropatterned lines. In particular, tumor cell velocity on 1D substrates was in agreement with the high velocity values of tumor cells on ECM fibers observed in vivo. In contrast, on classical 2D substrates, motility rates were ten fold lower than what can be observed in vivo. On micropatterned lines, the authors could also reproduce the assembly of alternating tumor cells and macrophages identified as streams in vivo, the ability of macrophages to enhance protrusion velocity and average velocity of tumor cells and showed that this effect was dependent on an intact paracrine loop without any additional need of co-factors.

The authors concluded that their “1D micropatterned substrate model more closely approximates the fibrillar nature of the in vivo tumor microenvironment and offers a simple and more appropriate substrate for detailed analyses of cell protrusion, cell-cell pairing and migration than conventional 2D substrates. The data presented here validates the use of micropatterned 1D adhesive substrates to study the fibrillar ECM found within the tumor microenvironment.”

Co-author Robert Eddy commented “It was a surprise that tumor cell and macrophage streaming behavior we observe in the highly complex tumor microenvironment was self-organizing and required no other extracellular cues on 1D adhesive substrates.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Olivier Pasquier Joins CYTOO as Chief Commercial Officer
Olivier Pasquier first graduated from the French University Nice-Sophia Antipolis in molecular biology. He then completed his background with a marketing MBA from ESCP Europe.
Monday, March 18, 2013
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos