Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

CYTOO’s 2D+ Technology and Institut Curie’s Organelle Map in the limelight at SLAS 2013

Published: Monday, January 07, 2013
Last Updated: Monday, January 07, 2013
Bookmark and Share
CYTOO will attend the Society for Laboratory Automation and Screening (SLAS) 2013 conference on 12-16 Jan, in Orlando, Florida, USA.

The company will present their 2D+ Solutions, opening fresh perspectives for cell based assay development in drug discovery.

2D+ Solutions are based on CYTOO’s standard and custom adhesive micropatterns in 96-well plates which guide cell architecture and behavior. By defining the 2D topology of cell adhesion, the 2D+ Cell Culture Platform enables fine control of the spreading and 3D shape of cultured cells in single- or multi-cellular configurations. This approach results in control of cell contractility, cell polarity, organelle positioning, and cell division axis.

2D+ Custom Solutions are specifically designed to bring expertise, resources and technology to address current bottlenecks in cell based assay development and screening in drug discovery.

2D+ Custom Solutions include: Exploratory solutions to guide customers through the initial exploration of the 2D+ technology with experienced PhD-level expert support; Assay development to select the best ecosystem for the requested cells; Screening to run pilot or full sized screens. All Solutions are tailored to the customer’s needs and can be carried out in the customer’s facilities or outsourced to CYTOO, on our fully equipped HCS screening platform.

The 2D+ technology addresses a major concern with traditional 2D culture, in which cells spread and move in an uncontrolled manner, introducing a considerable but unnoticed variability in cell function. Kristine Schauer, from the Institut Curie in Paris, France, used the crossbow adhesive micropatterns to get reproducible shape and distribution of intracellular compartments and developed a mathematical algorithm to generate and compare probabilistic density maps of the different endosome compartments.

This innovative approach is a powerful universal method to identify statistically relevant hits and drug effects in complex cell based assays, and according to Michel Bornens, COO at CYTOO “the method has now the potential to become a gold-standard in the quantitative analysis of cell-based high-throughput data”. Kristine Schauer’s Organelle Map figures among the nine 2013 SLAS Innovation Award finalists. A $10,000 cash prize will be attributed during SLAS 2013, and recognizes extraordinary achievement in innovative laboratory science and technology.

Attendees are invited to visit booth #310 to discuss their application with François Chatelain, President and CEO, and Lisa Minor, Application Development Leader.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Influential Cancer Researcher Receives Agilent Thought Leader Award
Biologist Scott Lowe receives award in recognition for his contributions to cancer biology.
Startup Seeks More Precise Prostate Cancer Screening
Gregor Diagnostics aims to bring a non-invasive prostate cancer screening test to the market.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
Preventing "Friendly Fire" in the Pancreas
Researchers inhibit process that leads to the body attacking its own insulin-producing cells.
Drug Target for Triple-Negative Breast Cancer Found
A team of researchers led by UC San Francisco scientists has identified a new drug target for triple-negative breast cancer.
3D-Printed Heart-On-A-Chip with Integrated Sensors
Researchers have created the first 3D-printed organ-on-a-chip with integrated sensors, paving the way for more complex, customizable devices.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
Targeting Cannabinoid CB2 Receptors in the CNS
With endogenous cannabinoids considered as a potential target to combat CNS diseases, this article examines the role of CB2R could play in fighting some disorders.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos