Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Chemists Find Help from Nature in Fighting Cancer

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Study of several dozen compounds based on a fungal chemical shows potent anti-tumor activity.

Inspired by a chemical that fungi secrete to defend their territory, MIT chemists have synthesized and tested several dozen compounds that may hold promise as potential cancer drugs.

A few years ago, MIT researchers led by associate professor of chemistry Mohammad Movassaghi became the first to chemically synthesize 11,11’-dideoxyverticillin, a highly complex fungal compound that has shown anti-cancer activity in previous studies. This and related compounds naturally occur in such small amounts that it has been difficult to do a comprehensive study of the relationship between the compound’s structure and its activity — research that could aid drug development, Movassaghi says.

“There’s a lot of data out there, very exciting data, but one thing we were interested in doing is taking a large panel of these compounds, and for the first time, evaluating them in a uniform manner,” Movassaghi says.

In the new study, recently published online in the journal Chemical Science, Movassaghi and colleagues at MIT and the University of Illinois at Urbana-Champaign (UIUC) designed and tested 60 compounds for their ability to kill human cancer cells.

“What was particularly exciting to us was to see, across various cancer cell lines, that some of them are quite potent,” Movassaghi says.

Lead author of the paper is MIT postdoc Nicolas Boyer. Other authors are MIT graduate student Justin Kim, UIUC chemistry professor Paul Hergenrother and UIUC graduate student Karen Morrison.

Improving nature’s design

Many of the compounds tested in this study, known as epipolythiodiketopiperazine (ETP) alkaloids, are naturally produced by fungi. Scientists believe these compounds help fungi prevent other organisms from encroaching on their territory.

In the process of synthesizing ETP natural products in their lab, the MIT researchers produced many similar compounds that they suspected might also have anti-cancer activity. For the new study, they created even more compounds by systematically varying the natural structures — adding or removing certain chemical groups from different locations.

The researchers tested 60 compounds against two different human cancer cell lines — cervical cancer and lymphoma. Then they chose the best 25 to test against three additional lines, from lung, kidney and breast tumors. Overall, dimeric compounds — those with two ETP molecules joined together — appeared to be more effective at killing cancer cells than single molecules (known as monomers).

The structure of an ETP natural product typically has at least one set of fused rings containing one or more sulfur atoms that link to a six-member ring known as a cyclo-dipeptide. The researchers found that another key to tumor-killing ability is the arrangement and number of these sulfur atoms: Compounds with at least two sulfur atoms were the most effective, those with only one sulfur atom were less effective, and those without sulfur did not kill tumor cells efficiently.

Other rings typically have chemical groups of varying sizes attached in certain positions; a key position is that next to the ETP ring. The researchers found that the larger this group, the more powerful the compound was against cancer.

The compounds that kill cancer cells appear to be very selective, destroying them 1,000 times more effectively than they kill healthy blood cells.

The researchers also identified sections of the compounds that can be altered without discernably changing their activity. This is useful because it could allow chemists to use those points to attach the compounds to a delivery agent such as an antibody that would target them to cancer cells, without impairing their cancer-killing ability.

Complex synthesis

Larry Overman, a professor of chemistry at the University of California at Irvine, says the new study is an impressive advance. “Movassaghi and coworkers reveal for the first time a number of relationships between the chemical structure of molecules in the ETP series and their in-vitro anti-cancer activity,” says Overman, who was not part of the research team. “Knowledge of this type will be essential for the future development of ETP-type molecules into attractive clinical candidates and potential novel anti-cancer drugs.”

Now that they have some initial data, the researchers can use their findings to design additional compounds that might be even more effective. “We can go in with far greater precision and test the hypotheses we’re developing in terms of what portions of the molecules are most significant at retaining or enhancing biological activity,” Movassaghi says.

The research was funded by the National Institute of General Medical Sciences.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Identify New Target For Anti-Malaria Drugs
Manipulating the permeability of a type of vacuole could help defeat malarial parasites.
Thursday, May 14, 2015
New Way To Turn Genes On
Technique allows rapid, large-scale studies of gene function.
Thursday, December 11, 2014
Microscopic “Walkers” Find Their Way Across Cell Surfaces
Technology could provide a way to deliver probes or drugs to cell structures without outside guidance.
Thursday, October 23, 2014
Stress-Induced Hormone Primes Brain for PTSD
MIT study finds that ghrelin, produced during stressful situations, primes the brain for post-traumatic stress disorder.
Wednesday, October 16, 2013
New Kind of Microscope uses Neutrons
Device could open up new areas of research on materials and biological samples at tiny scales.
Friday, October 04, 2013
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Microfluidic Platform Gives a Clear Look at a Crucial Step in Cancer Metastasis
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Friday, September 27, 2013
Watching Tumors Burst Through a Blood Vessel
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Tuesday, September 24, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Researchers Reverse Fragile X Syndrome Symptoms in Adult Mice
Picower Institute neuroscientists use single dose of experimental drug; could prove promising for treatment of autism symptoms.
Tuesday, March 26, 2013
Bringing a New Perspective to Infectious Disease
Enlisted in the fight against HIV, MIT engineers and scientists contribute new technology, materials and computational studies.
Thursday, February 07, 2013
A Safer Way to Vaccinate
Polymer film that gradually releases DNA coding for viral proteins could offer a better alternative to traditional vaccines.
Monday, January 28, 2013
Scientific News
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
Inroads Against Leukaemia
Potential for halting disease in molecule isolated from sea sponges.
Molecular ‘Kiss Of Death’ Flags Pathogens For Destruction
Researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos