Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New 24-well RAFT Kit for Realistic 3D Cell Culture Models for Toxicology Research

Published: Friday, March 08, 2013
Last Updated: Friday, March 08, 2013
Bookmark and Share
Come and see this versatile 3D cell culture method on TAP’s Booth #1159 at SOT.

TAP Biosystems will be unveiling its latest development in 3D cell culture, the RAFT™ 24 well Kit on Booth #1159 at the Society of Toxicology (SOT) Meeting.

The kit can produce realistic, reproducible single or multiple 3D cell cultures in physiologically relevant collagen scaffolds and could improve the results of a range of cell based assay models including those suitable for in-vitro toxicology models.

The new RAFT 24-well kit has been developed in response to researchers’ requests for a 24-well format to generate single or multiple collagen-based 3D cell culture models, ready for in-vitro toxicology research.

The kit is packaged individually to give ultimate flexibility in producing the number of cultures required, without any wastage of consumables or reagents.

The new kit leverages the novel RAFT collagen-based process and works with specially-developed reagents and a plate heater to generate 3D cell cultures using a simple protocol, in less than an hour.

The 24-well kit is the latest addition to the RAFT 3D cell culture portfolio that includes an automation-friendly 96-well version, as well as a kit for 3D cell culture using inserts, enabling researchers to use the RAFT system in a range of therapeutics areas for cell-based screening, modelling and research.

On the booth, TAP’s staff will demonstrate how scientists simply mix the reagents from the RAFT kit with their choice of cells at the desired cell seeding densities, pipette into their preferred type of 24 well plates (Corning, Greiner Bio-One, Millipore and Nunc plates are compatible) and incubate for 15 minutes at 37oC to form a cell-seeded collagen hydrogel.

The RAFT absorbers are placed manually onto the hydrogels, and in just 15 minutes the medium is wicked gently into the absorbers, leaving cells encapsulated in physiological strength collagen.

This 3D cell culture is then suitable for use in in-vitro cell-based assays using analytical techniques such as cell proliferation and immunofluorescent imaging.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

TAP Biosystems Presents New Data on 3D Cell Culture Research
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.
Monday, January 20, 2014
Scientific News
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
The Need for Speed
Evaluating MALDI-TOF as a high-throughput screening technology for the pharmaceutical industry.
Antarctic Sponge Extract Kills MRSA
New findings may provide opportunity for developing new drugs to fight dangerous bacteria currently highly resistant to treatment.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!