Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

New 24-well RAFT Kit for Realistic 3D Cell Culture Models for Toxicology Research

Published: Friday, March 08, 2013
Last Updated: Friday, March 08, 2013
Bookmark and Share
Come and see this versatile 3D cell culture method on TAP’s Booth #1159 at SOT.

TAP Biosystems will be unveiling its latest development in 3D cell culture, the RAFT™ 24 well Kit on Booth #1159 at the Society of Toxicology (SOT) Meeting.

The kit can produce realistic, reproducible single or multiple 3D cell cultures in physiologically relevant collagen scaffolds and could improve the results of a range of cell based assay models including those suitable for in-vitro toxicology models.

The new RAFT 24-well kit has been developed in response to researchers’ requests for a 24-well format to generate single or multiple collagen-based 3D cell culture models, ready for in-vitro toxicology research.

The kit is packaged individually to give ultimate flexibility in producing the number of cultures required, without any wastage of consumables or reagents.

The new kit leverages the novel RAFT collagen-based process and works with specially-developed reagents and a plate heater to generate 3D cell cultures using a simple protocol, in less than an hour.

The 24-well kit is the latest addition to the RAFT 3D cell culture portfolio that includes an automation-friendly 96-well version, as well as a kit for 3D cell culture using inserts, enabling researchers to use the RAFT system in a range of therapeutics areas for cell-based screening, modelling and research.

On the booth, TAP’s staff will demonstrate how scientists simply mix the reagents from the RAFT kit with their choice of cells at the desired cell seeding densities, pipette into their preferred type of 24 well plates (Corning, Greiner Bio-One, Millipore and Nunc plates are compatible) and incubate for 15 minutes at 37oC to form a cell-seeded collagen hydrogel.

The RAFT absorbers are placed manually onto the hydrogels, and in just 15 minutes the medium is wicked gently into the absorbers, leaving cells encapsulated in physiological strength collagen.

This 3D cell culture is then suitable for use in in-vitro cell-based assays using analytical techniques such as cell proliferation and immunofluorescent imaging.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

TAP Biosystems Presents New Data on 3D Cell Culture Research
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.
Monday, January 20, 2014
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Giant Molecules Inhibit Ebola Infection
European researchers have designed a "giant" molecule formed by thirteen fullerenes covered by carbohydrates which, by blocking this receptor, are able to inhibit the cell infection by an artificial ebola virus model.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos