Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Accelerating Drug Development

Published: Tuesday, March 12, 2013
Last Updated: Tuesday, March 12, 2013
Bookmark and Share
Professor Adrian Harris is currently leading a new type of trial to accelerate multi-agent drug development.

All human clinical trials of new treatments begin with phase I, where drugs are tested in isolation to confirm their safety.

Yet most effective cancer treatments use a combination of drugs, so-called 'multi-agent ' treatments.

After phase I trials are completed, it can sometimes take up to two years before multi-agent trials are approved, never mind conducting the lengthy phase II and III trials necessary before a new drug finally reaches the market.

Professor Adrian Harris at the University of Oxford is currently leading a new type of trial which aims to significantly accelerate multi-agent drug development.

Working with the Cancer Research UK Drug Development Office (DDO) and AstraZeneca, Professor Harris' team are now running phase I trials of a new cancer drug, AZD0424.

The big difference with this trial is that researchers and patients will not need to spend years waiting for approval after phase I is complete.

Since the trial was awarded flexible approval right from the start, researchers will be able to move straight to multi-agent trials to begin testing the new drug in three different 'arms'.

Each treatment arm will pair AZD0424 with a pre-approved cancer drug from a shortlist of 5.

All drugs on the shortlist have been approved for use in the trial, and the final three partner drugs will be chosen based on experiments in mice currently being undertaken at the Edinburgh and Belfast Cancer Research UK Centres.

Refining the choice of partner drugs while phase I trials are underway in Oxford adds a further time saving to the development process, and is possible thanks to the advanced approval process.

'Although the drug may be effective on its own, we expect substantial synergy in combinations,' says Professor Harris. 'So the strength of this trial is that we are able to pair it with other drugs without having to wait for further approval between stages.'

AZD0424 works by partially blocking two proteins, Src and ABL1, which are abundant in cancerous tissue. These proteins are important for cell growth, metastasis (the spread of cancer) and blood vessel development, so blocking them helps to halt the growth of cancer cells and shuts off their blood supply.

Researchers have selected a list of drugs whose effects are expected to complement AZD0424, and the results from Edinburgh and Belfast will help decide which ones to use.

'By pairing this drug with others, we can block multiple signalling pathways to improve the overall treatment,' explains Professor Harris. 'We hope that they will have additive or synergistic effects which could reduce or inhibit tumour growth.'

When the overall effect of multiple drugs is equal to adding up their individual effects, this is known as additive.

Synergistic effects are when drugs interact such that the result is greater than the sum of their individual effects.

The partner drugs have already been shown to work individually, but this trial is about finding their combined effects in humans.

'With conventional trial structures, it's unlikely that we would be investigating this drug in a multi-agent trial,' says Professor Harris. 'The flexibility to adapt the treatments used in the multi-agent stage will allow us to match specific patient groups and cancer types to the most promising drug pairs for their circumstances. By removing the considerable cost and delay of waiting for approval between stages, we can widen the pool of viable treatments and accelerate drug development.'

Yet doesn't removing this stage compromise the safety of the trials? Not according to Professor Harris.

'The approval granted before phase I was no less rigorous than it would have been if it was given between phases,' he explains. 'All of the drugs used in the trial have been tested for safety. One of the reasons for choosing AZD0424 is that similar drugs have minimal side effects, so it's a relatively low-risk compound to begin with. We will also reduce the dosage when we begin the multi-agent phase.'

Of course, this multi-arm trial design isn't suitable for all drugs. It does take a little longer to get advanced approval in the first place, delaying the start of phase I.

The design is well suited to a drug like AZD0424, which is expected to be most effective when used with other drugs. It is also important that patients in the trial receive good clinical care at all times.

'Professor Mark Middleton leads the clinical side,' says Professor Harris. 'He's currently running the phase I clinic, and every day he provides the highest quality of care to all patients in the trial. It's important that patients are treated holistically in the clinic.'

If the trial proves successful, Professor Harris hopes that the drug could be licensed for use with partner drugs within 4-5 years. 'It's worth remembering that by using combined approaches, including radiotherapy and surgery, half of common cancers are now curable,' he adds.

'A lot of people don't realize how far we've come in recent years. While there is still much work to be done, existing treatments for many cancers are highly effective. People often forget that, and it's important to focus on the positive sometimes.'

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First IVF Baby with New Embryo Screening Technique
The method uses the latest DNA sequencing techniques and aims to increase IVF success rates while being more affordable.
Tuesday, July 09, 2013
Key Molecule Could Reveal Many Cancers Early On
A technique for monitoring high levels of a protein found in many pre-cancerous cell types – including breast, lung and skin cancer – could be used to detect cancer early.
Wednesday, November 07, 2012
Scientific News
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
Inroads Against Leukemia
Potential for halting disease in molecule isolated from sea sponges.
Molecular ‘Kiss Of Death’ Flags Pathogens For Destruction
Researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Multi-Gene Test Enables Some Breast Cancer Patients to Safely Avoid Chemotherapy
A major study is providing the best evidence to date that a 21-gene test done on the tumor can identify breast cancer patients who can safely avoid chemotherapy.
Antidepressants Plus Blood-Thinners Slow Down Brain Cancer
EPFL scientists have found that combining antidepressants with anticoagulants slows down brain tumors (gliomas) in mice.
Diagnostics Breakthrough Brings Viral Sequencing to Doctors’ Toolkit
New screening tool produces up to 10,000-fold improvement in viral matches compared with traditional high-throughput methods.
New Virus Identified In Blood Supply
Scientists have discovered a new virus that can be transmitted through the blood supply.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos