Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

CvergenX, Inc. Partners with National Cancer Institute to Predict Radiation Therapy Success

Published: Wednesday, April 10, 2013
Last Updated: Wednesday, April 10, 2013
Bookmark and Share
Molecular signature assay could save costs and needless radiation therapy.

A molecular signature index technology that can lead to better radiation therapy decisions for patients with cancer is being developed into a reliable radiosensitivity test by CvergenX, Inc., an advanced cancer diagnostics company. It is being done in conjunction with the National Cancer Institute’s Clinical Assay Development Program (CADP).

Research collaborations between CvergenX and Moffitt Cancer Center have preliminary data on the molecular signature’s efficacy in trials for patients with rectal, esophageal, head and neck cancers and, most recently, for patients with breast cancer. The NCI has selected the technology, called InterveneXRT ™, for further development and validation in a commercial collaboration agreement with CvergenX with the aim of making an assay that is ready for use in clinical trials and approval by the U.S. Food and Drug Administration.

To date, the technology has been developed and correlated with retrospective clinical outcomes over more than seven years of research and with the help of more than $2 million in funding primarily from the NCI.

“Developing a radiosensitivity predictive assay has been a goal of radiation biology for decades,” said Javier F. Torres-Roca, M.D., a member of the Radiation Oncology, Chemical Biology and Molecular Medicine Programs at Moffitt and co-founder and chief scientific officer of CvergenX. “This effort supports the emphasis on personalized medicine, where the goal is to use molecular signatures to guide therapeutic decisions.”

According to Torres-Roca, approximately 60 percent of all cancer patients receive radiotherapy during their treatment. Until now, no molecular diagnostic or biomarker for radiosensitivity had been developed to predict its benefit. Once the assay is fully developed, Intervene XRT ™ may reduce the need for radiation therapy when the assay shows which patients will or will not respond to treatment.
The radiosensitivity molecular signature was originally developed based on gene expression for 10 specific genes and a linear regression algorithm. It was developed in 48 cancer cell lines using a systems-biology strategy focused on identifying biomarkers for cellular radiosensitivity.

The initial effort is focused on rectal cancer where preoperative radiotherapy is part of the standard of care for patients with stage 2 or 3 disease. However approximately 40 percent of patients do not experience a clinical response to pre-operative treatment. The CADP goal is to show whether this assay will “identify patients who will not benefit from preoperative chemoradiation (with 90 percent negative predictive value), enabling physicians to make informed decisions about the use of chemoradiation for these patients.”

The work will be done by the Clinical Assay Development Network, a nationwide network of CLIA certified labs (labs conforming to the Clinical Laboratory Improvements Amendments, 1988) who have placed a bid with the NCI to carry out the project. The NCI will provide the financing, expertise and labor for the assay development.

According to Mary Del Brady, chairman and CEO of CvergenX, the individualization of radiation therapy is an important component of personalized cancer treatment.

“We are the first commercial enterprise to develop a companion diagnostic to radiation therapy, joining a growing group of personalized medicine companies that are applying genomics-based analysis to clinical practice,” said Brady. “Our goal is to have a validated test with proven clinical utility in the marketplace within the next three years. The test will provide more information, and far greater accuracy, than oncologists have ever had, enabling them to adjust their clinical management for better outcomes for their patients.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
The Do’s and Don’ts of SPR Experiments
Surface Plasmon Resonance (SPR) is a technique that is becoming more widely used, particularly by anyone who wants to obtain accurate on (association) and off (dissociation) rates for biomolecular binding.
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
New Anti-Malarial Drug Screening Model
University of South Florida researchers demonstrate novel chemogenomic profiling to identify drug targets for the most lethal strain of malaria.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos