Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Adult Cells Transformed into Early-Stage Nerve Cells, Bypassing the Pluripotent Stem Cell Stage

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
A UW-Madison research group has converted skin cells from people and monkeys into a cell that can form a wide variety of nervous-system cells.

Bypassing the ultraflexible iPSC stage was a key advantage, says senior author Su-Chun Zhang, a professor of neuroscience and neurology. "IPSC cells can generate any cell type, which could be a problem for cell-based therapy to repair damage due to disease or injury in the nervous system."

In particular, the absence of iPSC cells rules out the formation of tumors by pluripotent cells in the recipient, a major concern involving stem cell therapy.

A second advance comes from the virus that delivers genes to reprogram the adult skin cells into a different and more flexible form. Unlike other viruses used for this process, the Sendai virus does not become part of the cell's genes.

Jianfeng Lu, Zhang's postdoctoral research associate at the UW-Madison Waisman Center, removed skin cells from monkeys and people, and exposed them to Sendai virus for 24 hours. Lu then warmed the culture dish to kill the virus without harming the transforming cells. Thirteen days later, Lu was able to harvest a stem cell called an induced neural progenitor. After the progenitor was implanted into newborn mice, neural cells seemed to grow normally, without forming obvious defects or tumors, Zhang says.

Other researchers have bypassed the pluripotent stem cell stage while turning skin cells into neurons and other specialized cells, Zhang acknowledges, but the new research, just published in Cell Reports, had a different goal. "Our idea was to turn skin cells to neural progenitors, cells that can produce cells relating to the neural tissue. These progenitors can be propagated in large numbers."

The research overcomes limitations of previous efforts, Zhang says. First, the Sendai virus, a kind of cold virus, is considered safe because it does not enter the cell's DNA, and it is killed by heat within 24 hours. (This is quite similar to the fever that raises our temperature to remove cold virus.) Second, the neural progenitors have a greater ability to grow daughter cells for research or therapy. Third, the progenitor cells are already well along the path toward specialization, and cannot become, say, liver or muscle cells after implantation. Finally, the progenitors can produce many more specialized cells.

The neurons that grew from the progenitor had the markings of neurons found in the rear of the brain, and that specialization can also be helpful. "For therapeutic use, it is essential to use specific types of neural progenitors," says Zhang. "We need region-specific and function-specific neuronal types for specific neurological diseases."

Progenitor cells grown from the skin of ALS (Lou Gehrig's disease) or spinal muscular atrophy patients can be transformed into various neural cells to model each disease and allow rapid drug screening, Zhang adds.

Eventually, the process could produce cells used to treat conditions like spinal cord injury and ALS.

"These transplantation experiments confirmed that the reprogrammed cells indeed belong to cells of the intended brain regions and the progenitors produced the three major classes of neural cells: neurons, astrocytes and oligodendrocytes," Zhang says. "This proof-of-principle study highlights the possibility to generate many specialized neural progenitors for specific neurological disorders."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Predicting Early Alzheimer's Disease
Alzheimer’s researchers have identified a scientific approach that may help predict which older adults are more likely to develop cognitive symptoms of Alzheimer’s disease well before the onset of dementia.
Monday, August 08, 2016
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Tuesday, November 10, 2015
In Directing Stem Cells, Context Matters
The surface cells are grown on has a profound effect on differentiation.
Tuesday, September 09, 2014
New Gene Repair Technique Promises Advances in Regenerative Medicine
Using human iPSC’s and DNA-cutting protein from meningitis bacteria, researchers have created an efficient way to target and repair defective genes.
Thursday, August 15, 2013
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Ribosome Recycling as a Drug Target
Researchers explain mechanism that recycles bacterial ribosomes stalled on messenger RNAs that lack termination codons.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Toxoplasma’s Balancing Act Explained
Parasite’s method of rewiring our immune response leads to novel tool for drug tests.
Cancer Signaling Pathway Illuminating Way To Therapy
Researchers refine a pro-growth signalling pathway, common to cancers, that can kill cancer cells while leaving healthy cells unharmed.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!