Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Almac Secures New Metagenomics and Enzyme Discovery Programme with UCL

Published: Wednesday, May 15, 2013
Last Updated: Wednesday, May 15, 2013
Bookmark and Share
The BBRSC Programme combines Chemistry and Biochemical Engineering at UCL with Almac’s Biocatalysis Group.

The Almac biocatalysis group has secured a prestigious BBSRC (Biotechnology and Biological Sciences Research Council) programme with UCL focused specifically on metagenomics and novel enzyme discovery. The R&D work concerned is set to be carried out jointly between Almac and the departments of Biochemical Engineering and Chemistry at UCL, with high level input from two world leaders in the field of biocatalyst discovery and application, Professors John Ward and Helen Hailes.

Dr. Tom Moody, Almac’s Head of Biocatalysis & Isotope Chemistry, commented “This clearly adds further depth to our expertise and complements our recent collaboration with DSM in accessing diverse enzyme collections.”

Professor Ward remarked: “We are very excited to continue working with Almac on this prestigious project, building on many years of collaboration and partnership. Indeed, this project will see our internal capabilities further developed with true industrial needs in our vision.”

The application of biocatalysis technology to the pharmaceutical and fine chemical industries is continuing to grow year on year and this trend is mirrored in the increasing number of synthetic projects being carried out by the biocatalysis group in Almac.

The only limitation of biocatalysis is in the number of diverse enzymes available in a given enzyme class, which dictates both the substrate range and the stereoselectivity observed for a desired chemical transformation. The majority of enzymes used in biocatalysis are derived from microbial sources. However, it is known that only a tiny percentage (as low as 0.1% from soil samples) of bacteria present in an environmental sample can be cultured and isolated.

Metagenomics, a culture-independent technique used to extract the total DNA from an environment, can circumvent this problem and allow access up to 99% of enzyme genes present in environmental samples. Work previously carried out at UCL has allowed a series of metagenomes to be obtained from various unusual sources. The use of bioinformatic tools developed by John Ward with Prof Christine Orengo of the Structural and Molecular Biology department at UCL will allow the metagenomes concerned to be mined for enzymes usable in both synthetic chemistry and synthetic biology projects.

Moody further commented “The need for more diverse enzymes has never been greater and this research programme further emphasises Almac’s commitment to UK research and to biocatalysis development.”

He continued; “The project will mainly focus on transaminase and cytochrome P450s enzymes. We will   identify, clone and express these enzymes before carrying out extensive screening against panels of ‘typical’ pharmaceutical and fine chemical substrates. This should enable us   to identify novel and commercially useful enzyme biocatalysts. As the follow-on step, directed evolution at Almac will enable further development of the lead enzymes concerned.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Almac Announces Launch of CLIA Validated Next Generation Sequencing Assay
P53 considered important biomarker for cancer drug discovery.
Thursday, November 13, 2014
Scientific News
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Valvena, GSK Sign New R&D Collaboration
Valneva to supply process development services for EB66® -based Influenza vaccines.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!