Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

TB Bacteria's Trash-Eating Inspires Search for New Drugs

Published: Tuesday, June 11, 2013
Last Updated: Tuesday, June 11, 2013
Bookmark and Share
When hijacking a garbage truck, one might as well make use of the trash. That logic drives how tuberculosis-causing bacteria feed, say Cornell scientists.

They report that bacteria-infecting macrophages – garbage truck-like immune cells – slow their hosts’ trash-processing abilities to snack on trash they pick up. The study, selected as Editor’s Choice in the journal Cellular Microbiology June’s issue, opens a new road in the search for better drugs to fight tuberculosis.

One of the world’s deadliest diseases, tuberculosis has been the No. 1 killer in many regions at different times throughout history, including the United States. It still infects a one-third of the world’s population, according to the Centers for Disease Control, and remains a leading killer of people who are infected with HIV. The bacteria Mycobacterium tuberculosis spread through air to cause the disease in humans and animals, usually attacking the lungs.

Though cases have declined in the United States, other parts of the world are experiencing increased incidence of tuberculosis, and new drug-resistant strains are emerging constantly, raising the stakes in the arms race for treatments.

“We are studying how this microbe deals with its host being an immune cell meant to kill microbes,” said microbiologist David Russell, the William Kaplan Professor of Infection Biology at Cornell’s College of Veterinary Medicine. “We’ve uncovered several ways the microbe changes the macrophage it infects to ensure its survival. Our lab’s drug-discovery branch is now using this new knowledge to identify molecules that could kill M. tuberculosis inside its host after infection.”

Russell’s lab developed a panel of tests that make real-time fluorescent images and quantitative measures of what happens in macrophages – big immune cells that patrol tissues, pick up debris from old or dead cells and sometimes kill microbes they encounter. A macrophage ingests its targets into its phagosome, a stomachlike compartment where it breaks down what has been picked up.

Important things macrophages pick up include low-density lipoproteins (LDLs), which move fatty lipids including cholesterol through the bloodstream. Too many LDLs, also known informally as “bad cholesterol,” can build plaques in arteries that can cause strokes, heart attacks and cardiovascular diseases. Macrophages help prevent plaques by consuming LDLs and breaking down their lipids.

But tuberculosis bacteria cripple infected macrophages’ abilities to process lipids, Russell found. Infected macrophages keep lipids in a way they didn’t before, and the bacteria feed on this fatty refuse while slowing the macrophages’ ability to remove plaque-causing LDLs. Images Russell captured caught the bacteria snacking red-handed, showing lipids moving from the macrophage’s phagosome into the bacteria.

“Seeing this process has helped us design our drug-discovery work to better match what’s happening in human tuberculosis,” said Russell. “Now that we have a better understanding of how these bacteria feed, our lab is looking for compounds that can use their feeding strategy against them to starve them or kill them outright to treat people who have been infected.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Thought to be Linked to Alzheimer's is Marker for Only Mild Impairment
Defying the widely held belief that a specific gene is the biggest risk factor for Alzheimer's disease, report says that people with that gene are more likely to develop mild cognitive impairment -- but not Alzheimer's.
Monday, February 18, 2013
Scientific News
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
New Cancer Drug Target in Dual-Function Protein
Scientists at The Scripps Research Institute (TSRI) have identified a protein that launches cancer growth and appears to contribute to higher mortality in breast cancer patients.
Penn State, TB Alliance, and GSK Partner To Discover New Treatments For TB
A new collaboration between TB Alliance, GSK, and scientists in the Eberly College of Science seeks to find new small molecules that can be used to create antibiotics in the fight against tuberculosis (TB).
Molecular Map Provides Clues To Zinc-Related Diseases
Mapping the molecular structure where medicine goes to work is a crucial step toward drug discovery against deadly diseases.
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
New Method Opens Door to Development of Many New Medicines
Findings from TSRI reveal human proteins are better drug targets than previously thought.
Diagnosing Systemic Infections Quickly, Reliably
Team develop rapid and specific diagnostic assay that could help physicians decide within an hour whether a patient has a systemic infection and should be hospitalized for aggressive intervention therapy.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Blood Test That Detects Early Alzheimer’s Disease
A research team, led by Dr. Robert Nagele from Rowan University School of Osteopathic Medicine and Durin Technologies, Inc., has announced the development of a blood test that leverages the body’s immune response system to detect an early stage of Alzheimer’s disease – referred to as the mild cognitive impairment (MCI) stage – with unparalleled accuracy.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!