Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Urine Test can Diagnose, Predict Kidney Transplant Rejection

Published: Friday, July 05, 2013
Last Updated: Friday, July 05, 2013
Bookmark and Share
NIH-funded study describes non-invasive alternative to kidney biopsy.

Analysis of three biomarkers in the urine of kidney transplant recipients can diagnose-and even predict -- transplant rejection, according to results from a clinical trial sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. This test for biomarkers -- molecules that indicate the effect or progress of a disease -- offers an accurate, non-invasive alternative to the standard kidney biopsy, in which doctors remove a small piece of kidney tissue to look for rejection-associated damage. The findings appear in the July 4 issue of the New England Journal of Medicine.

"The development of a non-invasive test to monitor kidney transplant rejection status is an important advance that will allow doctors to intervene early to prevent rejection and the kidney injury it causes, which should improve long-term outcomes for transplant recipients," said NIAID Director Anthony S. Fauci, M.D.

Following a kidney transplant, patients receive therapy to prevent their immune systems from rejecting the organ. Even with this immunosuppressive therapy, approximately 10 to 15 percent of kidney recipients experience rejection within one year after transplantation.

Typically, a biopsy is performed only after a transplant recipient shows signs of kidney injury. Although the procedure seldom causes serious complications, it carries some risks, such as bleeding and pain. In addition, biopsy samples sometimes do not give doctors an accurate impression of the overall state of the kidney because the samples are small and may not contain any injured tissue.

"Potentially, a non-invasive test for rejection would allow physicians to more accurately and routinely monitor kidney transplant recipients," said Daniel Rotrosen, M.D., director of NIAID's Division of Allergy, Immunology and Transplantation. "By tracking a transplant recipient's rejection status over time, doctors may be able to modulate doses of immunosuppressive drugs to extend the survival of the transplanted kidney."

In the study, part of the NIH-funded Clinical Trials in Organ Transplantation (CTOT), investigators at five clinical sites collected urine samples from 485 kidney transplant recipients from three days to approximately one year after transplantation. Researchers led by Manikkam Suthanthiran, M.D., of Weill Cornell Medical College in New York and Abraham Shaked, M.D., Ph.D., of the University of Pennsylvania School of Medicine, Philadelphia, assessed the urinary cell levels of several biomarkers that previously have been associated with rejection.

Statistical analysis revealed that a group of three urinary biomarkers formed a diagnostic signature that could distinguish kidney recipients with biopsy-confirmed rejection from those whose biopsies did not show signs of rejection or who did not undergo a biopsy. The biomarkers include two messenger RNA molecules that encode immune system proteins implicated in transplant rejection and one non-coding RNA molecule that participates in protein production. The researchers used the signature to assign values to each urine sample and identify a threshold value indicative of rejection. With this test, they could detect transplant rejection with a high level of accuracy. The investigators obtained similar results when they tested a set of urine samples collected in a separate CTOT clinical trial, thereby validating the diagnostic signature.

To determine whether the urine test also could predict future rejection, the scientists analyzed trends in the diagnostic signature in urine samples taken in the weeks before an episode of rejection. The values for patients who experienced rejection increased slowly but steadily leading up to the event, with a characteristic sharp rise occurring approximately 20 days before biopsy-confirmed rejection had occurred. In contrast, the values for patients who did not show any clinical signs of rejection remained relatively constant and under the threshold for rejection. These findings suggest that it might be possible to treat impending rejection before substantial kidney damage occurs.

"The test described in this study may lead to better, more personalized care for kidney transplant recipients by reducing the need for biopsies and enabling physicians to tailor immunosuppressive therapy to individual patients," said NIAID Transplantation Branch Chief Nancy Bridges, M.D., a co-author of the paper. The CTOT cooperative research consortium provided the infrastructure and collaborative environment needed to conduct the large, rigorous, multicenter study that established the efficacy of this biomarker-based test, Dr. Bridges noted.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Untangling a Cause of Memory Loss in Neurodegenerative Diseases
The mouse study identifies a possible therapeutic target for a family of disorders.
Thursday, October 13, 2016
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Finding Compounds That Inhibit Zika
Researchers identified compounds that inhibit the Zika virus and reduce its ability to kill brain cells.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Developing Software for Drug Development
NIH-led researchers develop software that could facilitate drug development to identify molecules that bind with high precision to targets of interest.
Monday, August 01, 2016
Molecule May Affect Gaucher, Parkinson's Disease
Research has identified a molecule that restores activity of a dysfunctional enzyme linked to Gaucher and Parkinson's disease.
Wednesday, July 27, 2016
Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
Scientific News
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Targeting Cannabinoid CB2 Receptors in the CNS
With endogenous cannabinoids considered as a potential target to combat CNS diseases, this article examines the role of CB2R could play in fighting some disorders.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Cocoa Compound Linked to Some Cardiovascular Biomarker Improvements
The study highlights the urgent need for large, long-term RCTs that improve understanding of how the short-term benefits of cocoa flavanol intake on cardiometabolic biomarkers may be translated into clinical outcomes.
Untangling a Cause of Memory Loss in Neurodegenerative Diseases
The mouse study identifies a possible therapeutic target for a family of disorders.
New Pathway for COPD Biomarker Development
A study from Philip Morris International has highlighted multi-lipid profiling as a potential new pathway for COPD biomarker development.
Stiffening a Blow to Cancer Cells
Researchers develop a way to predict how a tumor tissue's physical properties affect its response to chemotherapy drugs.
Anti-Cancer Drug Uses Tumour mRNA to Identify Responders
Phase I study of novel anti-cancer drug uses tumour mRNA expression to identify patients who will respond to the drug.
New Strategy for Choosing Cancer Drugs
Device can predict tumor responses by measuring cell growth after drug exposure.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos