Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First IVF Baby with New Embryo Screening Technique

Published: Tuesday, July 09, 2013
Last Updated: Tuesday, July 09, 2013
Bookmark and Share
The method uses the latest DNA sequencing techniques and aims to increase IVF success rates while being more affordable.

Dr Dagan Wells of Oxford University led the international team which has shown how 'next-generation sequencing' can be used to pick the embryos created by IVF that are most likely to lead to successful pregnancies.

The approach can identify embryos with the correct number of chromosomes and may cut hundreds of pounds off the cost of embryo screening, Dr Wells says, which currently adds £2000–£3000 to IVF treatments.

He will outline the development today at the European Society of Human Reproduction and Embryology's annual meeting in London.

The work was a collaborative effort. It received significant support from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, a partnership between Oxford University Hospitals NHS Trust and the University of Oxford. The collaboration also involved industrial partners, in particular the medical diagnostic company Reprogenetics UK.

The majority of embryos produced by IVF aren't able to lead to successful pregnancies, and scientists have sought to find ways of identifying the embryos that should be implanted to give the greatest chance of success.

How an embryo looks and how it develops during the first few days of life give some indication of its viability. However, many embryos turn out to have the wrong number of chromosomes – the packages of DNA we inherit from our parents. Having an incorrect number of chromosomes usually prevents embryos from producing a pregnancy. Until recently, such abnormalities have been hard to detect as they do not affect the appearance of embryos under the microscope.

Dr Wells, of the Institute for Reproductive Sciences in the Nuffield Department of Obstetrics and Gynaecology, explained: 'Many of the embryos produced during infertility treatments have no chance of becoming a baby because they carry lethal genetic abnormalities. Next-generation sequencing improves our ability to detect these abnormalities and helps us identify the embryos with the best chances of producing a viable pregnancy. Potentially, this should lead to improved IVF success rates and a lower risk of miscarriage.'

Recently, a number of trials of various chromosome screening methods have shown that they can improve IVF success rates by around 30%. But the costs of these genetic tests remain a barrier to their widespread use.

This led Dr Wells and colleagues to look at the possibilities of using the latest in DNA sequencing technology to screen embryos for chromosomal abnormalities. In recent years, next-generation sequencing has seen massive reductions in costs, a trend that looks set to continue.

Dr Wells said: 'Results from randomised clinical trials carried out during the last year have suggested that most IVF patients would benefit from embryo chromosome screening. However, the costs of these genetic tests are relatively high, putting them beyond the reach of many patients. Next-generation sequencing could make chromosome testing more widely available, improving access by cutting the costs.'

Next-generation sequencing has been revolutionising research and clinical genetics in many areas, generating vast quantities of data. But it had not yet been applied to embryo screening because of the challenge of applying the techniques to DNA from a single cell. A single cell is all that can be safely taken from a few-day-old embryo for testing.

The researchers' approach involves sequencing DNA from multiple embryos all at the same time. Short DNA tags or 'barcodes' added to the genetic material from each individual embryo mean that the results could be identified uniquely and mapped back to the right embryo.

The researchers explicitly do not read out the whole DNA code for each embryo. They deliberately limit sequencing to around 2% of the embryo's DNA, more than enough to determine the number of chromosomes present, but insufficient to reveal the status of individual genes.

In the future, it should be possible to use the approach to check for chromosomal abnormalities and any serious inherited disorders at the same time, the researchers believe. Dr Wells said: 'Next-generation sequencing provides an unprecedented insight into the biology of embryos.'

An initial validation study showed extremely high accuracy rates for the DNA sequencing approach, says Dr Wells. The study involved seeing whether known chromosome abnormalities, gene defects or mitochondrial DNA mutations could be identified in small numbers of cells from laboratory cell-lines. And cells from 45 embryos, previously shown to be abnormal with another testing technique, were reanalysed by next-generation sequencing where the researchers were 'blinded' to the abnormalities present.

Dr Wells' team then worked with the Main Line Fertility Clinic in Pennsylvania, USA, and the fertility clinic of New York University in New York City to use the method in assessing the chromosomes of embryos produced by two couples undergoing IVF.

Cells sampled from seven five-day-old embryos (known as 'blastocysts') were screened, revealing three chromosomally healthy blastocysts for the first couple and two for the second.

In both cases, transferring one of these embryos led to a healthy pregnancy. The first pregnancy saw a healthy baby boy born in June. The second pregnancy is progressing well and is due to deliver in the next couple of months.

'Our next step is a randomised clinical trial to confirm the true efficacy of this approach,' said Dr Wells. He hopes that might start later this year through the Oxford Fertility Unit and the Lister Fertility Clinic in London.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Accelerating Drug Development
Professor Adrian Harris is currently leading a new type of trial to accelerate multi-agent drug development.
Tuesday, March 12, 2013
Key Molecule Could Reveal Many Cancers Early On
A technique for monitoring high levels of a protein found in many pre-cancerous cell types – including breast, lung and skin cancer – could be used to detect cancer early.
Wednesday, November 07, 2012
Scientific News
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
Electrical Control of Cancer Cells
Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control these switches.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Determining the Age of Fingerprints
Watch the imprint of a tire track in soft mud, and it will slowly blur, the ridges of the pattern gradually flowing into the valleys. Researchers have tested the theory that a similar effect could be used to give forensic scientists a way to date fingerprints.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Researchers Publish Landmark “Basket Study”
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have announced results from the first published basket study, a new form of clinical trial design that explores responses to drugs based on the specific mutations in patients’ tumors rather than where their cancer originated.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!