Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

ChanTest Announces ChansPorter™ Assays to Accelerate Drug Development

Published: Monday, July 22, 2013
Last Updated: Monday, July 22, 2013
Bookmark and Share
ChansPorter™ Assays provide the best means possible for measuring the functional activity of important pharmaceutical targets, including the Cystic Fibrosis Transmembrane conductance Regulator (CFTR).

The new ChansPorter™ Assays provide faster and more accurate answers. Using human (patient-derived) bronchial epithelia, and incorporating higher throughput into the discovery screening and profiling processes increases productivity several fold by eliminating false positives and negatives arising from animal cell lines. Time-to-results also is shortened significantly, saving time and cost.

In a Cystic Fibrosis (CF) patient, the CF gene tells the individual’s epithelial cells to produce a defective version of the CFTR protein, which causes the mucus that lines the lungs (and other organs) to become thickened and sticky. Impaired epithelial transport function results in chronic disease that reduces quality of life and life expectancy.

In the process of drug discovery, a better understanding of the function of a target protein like CFTR in disease leads to the development of better drug candidates.

When considering epithelial diseases like CF, functional assays for measuring drug effects on the activity of electrogenic transporters (that mediate fluid transport or flow) play an important role.

The Ussing Chamber Assay (UCA) is an established electrophysiological assay that uses epithelial voltage clamp technology to evaluate electrogenic transporter activity and measure net fluid transport, electrolyte, nutrient and drug transport across epithelial tissues.

The UCA has been used to measure ex vivo (tissue) transport activity in essentially all epithelia. Cultured epithelial cells (primary and cell lines) capable of forming polarized epithelia (epithelia which allow the tissue to secrete or absorb fluid) are used extensively in in vitro UCAs for functional evaluations in drug discovery, physiology and toxicology.

“We have a highly-skilled team of cell biologists and electrophysiologists at ChanTest working on the Ussing Assay for drug discovery clients,” said Dr. Antonio Lacerda, Director of Contract Research & Development Services at ChanTest.

Dr. Lacerda continued, “Now, building on this technology, with ChansPorter Assays, I believe that we have the highest throughput in the industry, and a strong, high-quality capability for measuring important epithelial targets, such as CFTR.”

ChanTest regularly performs high-quality experiments on an unprecedented scale.

ChansPorter Assays include three independent 24-chamber Ussing systems dedicated to CF, R&D and contract research testing with the capacity to simultaneously test 72 epithelia grown on SnapWell™ filter inserts.

A fourth 24-chamber system is used for cGMP compliant release assays.

ChanTest employs a higher throughput embodiment of the UCA with a semi-automated system that utilizes a robot, a 24-channel epithelial voltage clamp (TECC-24) and 24-well microplates containing CFhBE (Cystic Fibrosis human Bronchial Epithelia) grown on permeable support for up to five times the throughput of the 24-chamber systems.

The epithelia are derived from cultures of patient primary cells or cell lines (of both human and animal origin).

There is an urgent need to accelerate the identification of new solutions in drug discovery for cystic fibrosis patients.

ChansPorter™ Assays provide the industry with a way to more quickly and accurately assess the best drug candidates by measuring the functional activity of important pharmaceutical targets, including CFTR.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

ChanTest Acquires Applied Cell Sciences
Expanded drug discovery and development services, cell lines, and reagents now cover nearly half of the known drugable genome.
Friday, February 27, 2009
Scientific News
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Microalgae Make a Splash in the UK Cosmeceutical Market
Scottish innovators have discovered an anti-viral and anti-inflammatory carbohydrate in microscopic algae (microalgae) which has huge potential to change the cosmetics market.
Mechanism of Tumor Suppressing Gene Uncovered
The most commonly mutated gene in cancer,p53, works to prevent tumor formation by keeping mobile elements in check that otherwise lead to genomic instability, UT Southwestern Medical Center researchers have found.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!