Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Funds Research to Explore a Cell Communication Process

Published: Wednesday, August 14, 2013
Last Updated: Wednesday, August 14, 2013
Bookmark and Share
Researchers will investigate the emerging field of extracellular RNA and its role in human health conditions.

The National Institutes of Health announced today it will award $17 million this year for 24 research projects designed to improve scientists’ understanding of a newly discovered type of cell-to-cell communication based on extracellular (outside the cell) RNA, also called exRNA. Through these awards, scientists will explore basic exRNA biology and develop tools and technologies that apply new knowledge about exRNA to the research, diagnosis and treatment of diseases. To unlock the potential of this new scientific field, the awarded research projects will address conditions in which exRNA could play a role, including many types of cancer, bone marrow disorders, heart disease, Alzheimer’s disease and multiple sclerosis.

The collaborative, cross-cutting Extracellular RNA Communication program is supported by the NIH Common Fund and led by a trans-NIH team that includes the National Center for Advancing Translational Sciences (NCATS); National Cancer Institute (NCI); National Heart, Lung, and Blood Institute (NHLBI); National Institute on Drug Abuse (NIDA); and National Institute of Neurological Disorders and Stroke (NINDS).

“We have a tremendous opportunity to explore a recently discovered novel way that cells communicate,” said NIH Director Francis S. Collins, M.D., Ph.D. “Expanding our understanding of this emerging scientific field could help us determine the role extracellular RNA plays in health and disease, and unlocking its mysteries may provide our nation’s scientists with new tools to better diagnose and treat a wide range of diseases.”

Scientists think exRNA can regulate many functions in the body and may have an important role in a variety of diseases, but they still know very little about basic exRNA biology. Most RNA works inside cells to translate genes into proteins that are necessary for organisms to function. Other types of RNA control which proteins and the amount of those proteins the cells make. Until recently, scientists believed RNA worked mostly inside the cell that produced it. Now, recent findings show cells can release RNA in the form of exRNA to travel through body fluids and affect other cells. ExRNA can act as a signaling molecule, communicating with other cells and carrying information from cell to cell throughout the body.

Researchers hope to use some kinds of exRNA as biomarkers, or indicators of the presence, absence or stage of a disease. These biomarkers may enable scientists to understand and diagnose diseases earlier and more effectively. Scientists also will use exRNA to develop molecular treatments for diseases.

“To harness exRNA’s enormous potential for diagnostics and therapeutics in a broad range of diseases, we first need to understand more about different types of exRNA, how cells make and release it, how it travels through the body, how it targets and affects specific cells, and how the amount and type of exRNA can change in disease,” said James Anderson, M.D., Ph.D., director of the Division of Program Coordination, Planning, and Strategic Initiatives, which oversees the NIH Common Fund. “Awards in this exciting new field will help advance our collective understanding of exRNA communication and will enable research in many biomedical research fields.”

Multidisciplinary teams of investigators will carry out research projects in a number of critical scientific areas. NCATS will administer 18 awards through which researchers will develop biomarkers from exRNA and design new ways to use exRNA in treatments. NCI will oversee five projects that address how cells make and release exRNA (biogenesis), how and where exRNA travels through body fluids to other cells (biodistribution), how cells take in exRNA that is traveling through body fluids (uptake), and how exRNA changes the function of cells (effector functions). NIDA will support a project to develop a Data Management and Resource Repository that will house all of the data generated by these projects, including a public ExRNA Atlas website to serve as a community-wide resource for exRNA research standards, protocols, data, tools and technology. Scientists working on these projects will form an ExRNA Consortium to collaborate, share information, and spread knowledge to the larger scientific community and public.

“NCATS develops, demonstrates and disseminates new technologies that catalyze improvements in human health” said NCATS Director Christopher P. Austin, M.D. “These awards epitomize that mission, delving into a brand new area of science to discover new targets for interventions, diagnostics, biomarkers and therapeutics — all of which will speed the path from discovery to improved health.”

The 24 awards are milestone-driven cooperative agreements. Individual projects will be supported for up to five years, except for the Data Management and Resource Repository, which could be supported longer. To learn more about the research projects, visit http://commonfund.nih.gov/exrna/fundedresearch.

Later this year, NIH plans to issue a request for applications to develop an exRNA reference profile, which is a catalog of the types of exRNA found in various body fluids from healthy humans. NHLBI will lead this effort to enable studies on how exRNA profiles of people with diseases differ from those of healthy people.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
NIH Awards Nearly $35 Million to Research Natural Products
Innovative Research Centers Program investigates botanical dietary supplements and other natural products.
Thursday, September 10, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Tuesday, August 04, 2015
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
Scientific News
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
Drugs that May Combat Deadly Antibiotic-Resistant Bacteria Uncovered
Study identifies 79 compounds that inhibit carbapenem-resistant Enterobacteriaceae (CRE).
Making Precision Medicine a Reality
Researchers are one step closer to understanding the genetic and biological basis of diseases like cancer, diabetes, Alzheimer’s and rheumatoid arthritis – and identifying new drug targets and therapies.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!