Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Biochip Holds Great Promise for Quickly Triaging People After Radiation Exposure

Published: Friday, August 16, 2013
Last Updated: Friday, August 16, 2013
Bookmark and Share
Chip could lead to a much-needed way to quickly triage people after possible radiation exposure.

He led the multi-institutional team that developed the panel of radiation-sensitive blood proteins.

“The goal is to give medical personnel a way to identify people who require immediate care. They also need to identify the expected much larger number of people who receive a dose that doesn’t require medical attention,” Wyrobek adds.

Currently, the most common way to measure radiation exposure is a blood assay called dicentric chromosome assay that tracks chromosomal changes after exposure. Another approach is to watch for the onset of physical symptoms. But these methods take several days to provide results, which is far too late to identify people who’d benefit from immediate treatment.

The new, much faster method comes about thanks to a collaboration between scientists from radiation biology, biostatistics, and engineering disciplines.

Over the past several years, Wyrobek and colleagues in Berkeley Lab’s Life Sciences Division have explored the biochemical signatures of radiation dose. They’ve identified more than 250 proteins that change after exposure. These proteins can serve as biomarkers that indicate whether a person has been exposed to radiation, and by how much. What’s been lacking is a platform that puts these biomarkers to use.

Meanwhile, in the laboratory of Stanford University’s Shan Wang, researchers have pioneered the use of magnetic nanoparticles and giant magnetoresistive sensors for bio-detection. These sensors are coated with molecules that are designed to capture other “target molecules.” The sensors produce electrical signals when the target molecule, followed by a magnetic nanoparticle, attach to it. In this way, a person can detect the presence of nanoscale objects such as proteins — even though the objects are invisible to the naked eye.

The two groups began working together a couple of years ago. Wyrobek’s team supplied antibodies for two protein biomarkers of radiation exposure. Wang’s team incorporated these antibodies into magneto-nanosensors. They also created a smaller-than-a-penny-sized chip with 64 of these sensors. A shoebox-sized chip reader connects the chip to an electronic circuit board. The chip reader can be linked to a laptop or smartphone for easy readout.

They tested the system using blood from mice that had been exposed to radiation. Here’s how it works: A drop of blood is placed on the chip. The biomarker proteins in the blood attach themselves to an antibody on one of the chip’s 64 magneto-nanosensors. A second step adds detection antibodies and magnetic nanoparticles to each “captured” protein. The sensors recognize the nanoparticles’ presence, and send electronic signals to the circuit board that indicate the number of proteins present.

“You add a drop of blood, wait a few minutes, and get results,” says Wyrobek.

Their proof of principle test matched results obtained via a widely used molecule-detection test called an ELISA assay. It also worked up to seven days after exposure.

“It’s very satisfying to see that the assay, based on magneto-nanosensors, has validated the radiation dose response of the protein markers identified by the Berkeley Lab team,” says Wang.

The scientists next hope to add antibodies for additional proteins to the chip so it can detect the presence of even more biomarkers.

The research was funded primarily by the Department of Health and Human Services’ Biomedical Advanced Research and Development Authority.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
Thursday, June 18, 2015
Scientific News
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Honey’s Potential to Save Lives
The healing powers of honey have been known for thousands of years.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Valvena, GSK Sign New R&D Collaboration
Valneva to supply process development services for EB66® -based Influenza vaccines.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!