Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Biochip Holds Great Promise for Quickly Triaging People After Radiation Exposure

Published: Friday, August 16, 2013
Last Updated: Friday, August 16, 2013
Bookmark and Share
Chip could lead to a much-needed way to quickly triage people after possible radiation exposure.

He led the multi-institutional team that developed the panel of radiation-sensitive blood proteins.

“The goal is to give medical personnel a way to identify people who require immediate care. They also need to identify the expected much larger number of people who receive a dose that doesn’t require medical attention,” Wyrobek adds.

Currently, the most common way to measure radiation exposure is a blood assay called dicentric chromosome assay that tracks chromosomal changes after exposure. Another approach is to watch for the onset of physical symptoms. But these methods take several days to provide results, which is far too late to identify people who’d benefit from immediate treatment.

The new, much faster method comes about thanks to a collaboration between scientists from radiation biology, biostatistics, and engineering disciplines.

Over the past several years, Wyrobek and colleagues in Berkeley Lab’s Life Sciences Division have explored the biochemical signatures of radiation dose. They’ve identified more than 250 proteins that change after exposure. These proteins can serve as biomarkers that indicate whether a person has been exposed to radiation, and by how much. What’s been lacking is a platform that puts these biomarkers to use.

Meanwhile, in the laboratory of Stanford University’s Shan Wang, researchers have pioneered the use of magnetic nanoparticles and giant magnetoresistive sensors for bio-detection. These sensors are coated with molecules that are designed to capture other “target molecules.” The sensors produce electrical signals when the target molecule, followed by a magnetic nanoparticle, attach to it. In this way, a person can detect the presence of nanoscale objects such as proteins — even though the objects are invisible to the naked eye.

The two groups began working together a couple of years ago. Wyrobek’s team supplied antibodies for two protein biomarkers of radiation exposure. Wang’s team incorporated these antibodies into magneto-nanosensors. They also created a smaller-than-a-penny-sized chip with 64 of these sensors. A shoebox-sized chip reader connects the chip to an electronic circuit board. The chip reader can be linked to a laptop or smartphone for easy readout.

They tested the system using blood from mice that had been exposed to radiation. Here’s how it works: A drop of blood is placed on the chip. The biomarker proteins in the blood attach themselves to an antibody on one of the chip’s 64 magneto-nanosensors. A second step adds detection antibodies and magnetic nanoparticles to each “captured” protein. The sensors recognize the nanoparticles’ presence, and send electronic signals to the circuit board that indicate the number of proteins present.

“You add a drop of blood, wait a few minutes, and get results,” says Wyrobek.

Their proof of principle test matched results obtained via a widely used molecule-detection test called an ELISA assay. It also worked up to seven days after exposure.

“It’s very satisfying to see that the assay, based on magneto-nanosensors, has validated the radiation dose response of the protein markers identified by the Berkeley Lab team,” says Wang.

The scientists next hope to add antibodies for additional proteins to the chip so it can detect the presence of even more biomarkers.

The research was funded primarily by the Department of Health and Human Services’ Biomedical Advanced Research and Development Authority.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
Thursday, June 18, 2015
Scientific News
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Targeting Cannabinoid CB2 Receptors in the CNS
With endogenous cannabinoids considered as a potential target to combat CNS diseases, this article examines the role of CB2R could play in fighting some disorders.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Cocoa Compound Linked to Some Cardiovascular Biomarker Improvements
The study highlights the urgent need for large, long-term RCTs that improve understanding of how the short-term benefits of cocoa flavanol intake on cardiometabolic biomarkers may be translated into clinical outcomes.
Untangling a Cause of Memory Loss in Neurodegenerative Diseases
The mouse study identifies a possible therapeutic target for a family of disorders.
New Pathway for COPD Biomarker Development
A study from Philip Morris International has highlighted multi-lipid profiling as a potential new pathway for COPD biomarker development.
Stiffening a Blow to Cancer Cells
Researchers develop a way to predict how a tumor tissue's physical properties affect its response to chemotherapy drugs.
Anti-Cancer Drug Uses Tumour mRNA to Identify Responders
Phase I study of novel anti-cancer drug uses tumour mRNA expression to identify patients who will respond to the drug.
New Strategy for Choosing Cancer Drugs
Device can predict tumor responses by measuring cell growth after drug exposure.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos